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An extension of the mixture-model approach to the theory of liquid waler 
is developed to include aqt, eous solutions of nonelectrolytes. The Kirkwood- 
Buff theow of solution is employed to obtain a general and exact expression 
for the "stabilization effect" induced by the solutc. This relation is applied, 
in the framework of a two-structure model, to obtain further insight into the 
molecular origin of some anomalous thermodynamic properties of aqueous 
solutions. The generalized continuous mixturc-modcl formalism is also 
extended to solutions. It is dcmonstrated that current concepts such as 
"structural changes" in the solvent are strongly dependent on the particular 
classification procedure adopted to construct the mixturc model. 

KEY W O R D S :  StJLtlst lcal mec l 'an ics  ; a q u e o u s  s o l u t i o n s  ; s o l u t i o n s  ; s t r u c t u r e  

of water; mixture-model theory of fluids. 

1. I N T R O D U C T I O N  

In  the p r ev ious  ar t ic les  11.2~ o f  this scncs  a m i x t u r e - m o d e l  a p p r o a c h  has  

been  d e v e l o p e d  and  app l i ed  to the  thct~ry o f  l iquid  water .  Th is  pape r  
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extends the application o f  this approach to aqueous solutions o f  non- 
electrolytes. 

It is now well known that aqueous solutions o f  nonelectrolytcs reveal 
some outstanding properties in comparison with the corresponding non- 
aqueou.s solutions. ~ For  example, the entropy and the enthalpy of  solution 
of  argon in water are distinctly more negative than the corresponding values 
in other fluids for which data are available."" 

It has long been postulated that "structural  changes" in water should 
hold the clues for this apparently anomalous  behavior. An earlier example o f  
application of  the mixture-model idea to explain a puzzling observation is 
following. ''~ Addit ion o f  some solutes such as ether or methyl acetate to 
water was known to decrease the compressibility of  the system m spite of  
the fact that the compressibility or" these pure liquids is a few times larger 

than that of  pure water. It has been postulated that water is "buil t  up" of  
at least two species (say, monomers  and polymers of  water molecule.,,, the 
latter species supposedly having higher compressibility). Addition o f  solute 
causes a shift toward that component  which has lower compressibil i t> .... 
hence a qualitative explanation o f  the observable effect was provided? 

So far concepts like the "structure of  water" and "'structural changes" 
induced by a solute were used either within the framework of  an ad hoc 

mixture model for water or in connection with some experimental observa- 
tion. The latter has been interpreted in terms of  these concepts although 
precise definitions have been lacking. Bernal and Fowler t~) have introduced 
the concept of  "structural  temperatures" whi,'h, al though not providing a 
definition o f  the "structure,"  give'." a useful qualitative way of  correlating 
changes of  structure due to the addition of  solute with changes o f  structure 
caused by changes of  temperature. Such a correlation is based on the premise 
that we " k n o w "  that any reasona~le quantity defining the "~tructure of  
water" would probably decrease upon increasing the temperature? 

Frank and Evans, tS~ in an effort to explain the anomalous  thermodynamic  
behavior of  aqueous solutiens, have introduced the idea of  an "iceberg 
format ion"  around the solute. Further research in this field has been con- 
centrated on the following two main questions: (I) What is the structure 
of  the immediate environmeet  o f  a solute molecule in water ? (2) What  are 
the molecular reasons for the phenomena of  "'~lructural changes" it" any '.' 

z For a review mainly concerned witl l  th~ experimental aspects of this topic see Ref. 3. 
I:or a review of some theoretical aspects ~ee Rcf. 4. 

s This "explanation" is not satisfactory, ho',Acvcr, cxcn on quafitati~c grounds, l-or. 
suppose that we knew that the solute has shifted tile equilibrium toward the component 
with lower compressibility; there is still an unknov, n effect on the relaxation term [see 
Eq. (2.16) of Ref. 2] that we cannot predict even in a qualitative manner. 
A more detailed discussion of this subject is given in Ref. 7. 
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This paper is concerned with tile second question. One should bear in 
mind that almost all theories of "slructural changes" are deeply anchored 
in some specific ad  boc mixture model for water? It is therefore no wonder 
that some serious doubts have beeq cast upon their validity. Moreover, even 
the very application of the mixture-model idea has been called in question 
and vigorously criticized as being unsupported on experimental grounds. 
(It is instructive to note that even the example cited above on the effect of 
solute on the compressibility was presented ~:" as "a most impressive piece 

of evidence for the theory of polymerizalion of water"). In parts I and !1 
of this series an exact mixture-model approach has been developed, which 
does not require any experimentzl evidence for ils support. 

[n this paper an attempt is made to accommt~date some of the current 
concepts and ideas prevailing in the literature un aqueous solutions into an 
exact framework. Although we shall be using classical statistical mechanics 
throughout, we feel that the basic arguments and conclusions will still be 
valid in a quantum mechanical extension ,~f the theory. The most important 
feature of the classical treatment is that all internal properties of a single 
water molecule are assumed to be separable from the total partition function 
(these may be treated either classically or quantum mechanically) and arc 
presumed not to be affected by tt, e type o1 environment of the molecule. 
In particular, we shall assume that a solute ~ldjacent to a water molecule 
does not affect its internal properties. The latter could have been accounted 
for only by using quantum mech,t,lical lal~uage. 

Our starting point will be the general t\~rmalism of quasicomponent 
distribution functions c~,2~ (QCI IF) ~ hich en:tblcs us to view a one-component 
system as a mixture of any number ,~i" q~a~,lcomponcnts. The simplest of 
these is the so-called "two-structure model" IISM). The term "model" is 
somewhat misused here in the sense th,t t3,~ m,,delistic assumptions arc 
invoked in the construction of TSM. 

In the next section the main problc~ is formulated in the TSM. The 
Kirkwood-Buff t2~ theory of solution is employed in Section 3 to examine the 
molecular origin of  the "structural ,changcC' indt,:cd by a solute. f he  main 
result of this section is the general exprcss.m (vahd for any "I'SM) Ik)r the 
"'stabilization effect" of the solute on one of the components, denoted by I.: 
it reads 

lim [~,N, .  "j . 
v s - . 0 \  ~NsIpT,~,~ -- .~.'t..\,l;/(I ; l:.,~) �9 pw.-ltu] (I 

where xs  and xH are the mole fractions of the two components I. and t i .  
VL and Vn are their partial molar ~olumes. p,, t'r : P.  is the total density 

6 Some specific applications of the mixture-model approach to aqueous solution,; of nnn- 
electrolytes are given in Refs. 7 and 9-19 
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of the liquid, and 7/and A s t.n are quantities to be defined in (18) and ~28), 
respectively. Though iTL and Vu may also be expressed in terms of molecular 
quantities, the expression was found more usel'td for purposes or" inter- 
pretation. Some exact consequences of this results are discus,,ed in Scctiot~ 3. 

Section 4 is devoted to a more qualitative analysis of  relation (1). Some 
speculations as to the molecular o ,~m of the thermodynamic properties of 
aqueous solutions are discussed,~hc central conclusion of  this section may 
be summarized as follows: If we classified the water molecules into tgo  
components, one with rebawely "low local density" (L) and the other with 
relatively "higb 1o,,'r uensity" (tt), then a solute S is likely to be accom- 
modated nea,-'.,e former species. This species wilt therctbre be stabilized, in 
the se-~- "-"at  the derivative (1) is positive. The unique response of water is 
m~,,Mested in the coupling of a ne.eative heat transfer, /71. - n i t ,  to the 
,r "stabilization effect," thus producit~g a large, negative relaxation 

, '-rm to the partial molar enthalpy of the solute. It turns out that this peculiar 
coupling is almost exactly the same argument employed to explain the 
anomalous temperature dependence of  the volume of water. ~,z~ 

Section 5 is devoted to some general aspects of the mixture-model 
approach. It is demonstrated that the split of  any partial molar quantity of 
the solute into "static" and "relaxation" terms strongly depends on the way 
we like to view the solvent. Also, tht, identification of the "structural changes" 
in the solvent, though a useful concept in some cases, is purely a matter of 
choice of the particular QCDF. 

2. T H E R M O D Y N A M I C  T R E A T M E N T  

In this section we shall formulate some of the thermodynamic quantities 
pertinent to aqueous solutions in the ~ame theoretical framework that has 
been applied to pure liquid it, Ref,~. I aftd 2. The system under consideration 
consists of  Nw water molecules and N~ solute molecules (later we shall 
restrict the discussion to the case Nx-:'~ N~) at a given pressure P and 
temperature T (P and T will henceforth be algays kept constant and wilt be 
omitted from the notations). 

All the treatment in this and the following section will apply to any 
possible TSM. As a concrete example we may think of the one based on tile 
concept of coordination number, namely ct,'~ 

K ~  

K , 0  

Nst ~ ~ Nx (3) 
K- ,K*  ~1 
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~1 l i d  

Nw Nr i N,,,, {4) 

l lere NA- is the average number of  water molecules having coordination 
numbeP equal to K. The number K* is selected m order to induce a distinction 
between a "low local density" component  L and a "high local density" 
component H. 

We shall henceforth use the variables NL and N .  for the average number 
of molecules of the two species L and !f: however, these are not necessarily 
the ones defined in (2) and (3). We shall thus reserve the freedom of selecting 
any specific TSM, and in this sense the Ireatment will be quite general. At it 
point where interpretation is called on it will be found useful to employ the 
specific example cited above with a choice of K* :is 4 or 5. 

Any extensive thermodynamic quanlfly may be viewed as either a 
function of (P, T, Nw,  Ns) or of (P. T, ;YL, N . .  Ns). Note that a QCDF 
has been applied only to the water molecules; a more general case will be 
treated in Section 5. The partial molar emhalpy, entropy, and free energy ot 
the solute S may be written as 

�9 . . . .  t = L a "  /-is 

: :  Hs* i_ Arts" 

~S &S" 

= ( v < - ) , , w  : :  �9 ,'V(.. :',ill 

= Ss* + ASs" 

i e { , . ,  

::-. t~s* ~,-At ,  s" 

�9 ' 

{ B  l - H H )  \ ~ I V s - ) N w  

: ('S" " $")  (, ~'Ns/,Vw 

?Ns l . ~ w  

{5) 

(6} 

(7) 

In each case the first term on the r.h.s., wzth an asterisk, is referred to as the 
"static" part, and the second as the "relaxation" part, of  the corresponding 
partial molar quantity. 

A general and important result follows immediately from the condition 
of "chemical equilibrium": 

t * s  - t ~ .  (8) 

Note that  in coun t ing  neighbors  in aqueous  solut ions we may  either count  all molecules 
which fall in the Rc sphere  (see Ref. I) of  a given molecule,  or count  only water molecules.  
In both  cases we get a proper  Q C D F ;  the latler point o f  view seems more  useful for the 
purpose  of  this m'ticle and  will be adopted th roughout .  



8 A. Ben-Naim 

Hence from (7) we get 

its tz~. * ~9) 

i.e., for any classification into two components the contribution from the 
relaxation term to the chemical potential tzs vanishes. This conclusion is also 
valid for any multicomponent mixture-model approach. Furthermore, it 
follows from (8) that 

HL .... 7Sj .  i;ljt --- TSH (10) 

or equivalently 

J H J  �9 7 " ~ S J  I l l )  

which means that the relaxation part of H s exactly compensates the relaxation 
part of T S s  �9 This may be viewed as a general formulation of the "enthalpy 
entropy compensation" phenomenon. C2j~ which, again, is valid for any 
mixture-model approach. 

The traditional interpretation of the large, negative enthalpy and entropy 
of solution of a nonelectrolyte in water is thc tbllowing. "~ One identifies the I. 
form with the hydrogen-bonded water molecules and the 11 form with the 
nonbonded molecules; hence it is expected that /]L --- [/H ~ill be negative. 
If in addition we postulate that the solule S "stabilizes" the L form, i.e., that 

( ~ ' N t . / i ' N s ) x , , . .  t) (12) 

then the relaxation part of R~ (and hence ol' S.,) will be negative. Since the 
transfer from the H form to the L form is c.xpccted to involve formatitm o1" 
hydrogen bonds, these relaxation quantities are expected to be large and 
negative--hence a reasonably qtmlitativc interpretation for the ob~erv:thlc 
phenomena is attained. 

We believe that the above reasoning is ba~ically correct. I he iacl that 
the quantity/-TL -- lt/'u is negative may bc accepted by virtuc of ttle definition 
of the two components, and does not ncces.~arily involve the concept of the 
hydrogen bond. The crucial question may be stated as follows: Suppose wc 
have chosen the two components in such a way that t~/~. -- /Tu < 0; how 
do we know that in this case the stabilization cfl'cct is positive ? Or conversely, 
we could have chosen the two components m such a way that (12) is valid: 
then the question may be raised about the sign of HL - / i , .  These questions 
have been studied by many authors ~'q-~9' by using ad hoc model for water. 

The central theme of  this paper is to examine the exact condition under 
which a stabilization of, say, the L form occurs. The tactic of the present 
investigation differs from the traditional one, where a model for water is 
assumed and then the condition (12) is examined. We shall first derive a 
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general and exact expression for the derivalive (ONt./ONs).~.w which is valid 
for any TSM. Then we shall seek the general requirements under which this 
derivative is positive. 

A convenient starting point for our investigation is the Ihermodynamic 
identity( ~.4~ 

[?~Nt ] [ i:'(''C-- I-L!1-) (13) 1 
" --(g'LL .... 2gL. i /~n.) -1 t i'Ns -/+,r.,,+ . .  ~)Ns lNw 

wherc p.,j ---. ~'ZG/ON+ ?Ni, and the quantity gLL -- 2~ut  ' ~1.1 is always 
positive.(~ 

The advantage of using the identity (13) is twofokl. In the first place 
the problem of finding the sign of (I!N~./~:N~),~,v in the equilibrated system, 
with respect to the equilibrium L - -  II, is reformulated, on the r.h.s, of (13), 
in a system where the equilibrium has been "'[t'ozen hr." Second, all of the 
derivatives appearing on the r.h.s, of (13) may be expressed in terms of 
molecular quantities through the Kirkwood-Buff theory of solution, a feature 
which will be exploited in the next section. 

3. A P P L I C A T I O N  O F  T H E  K I R K W O O D - B U F F  
T H E O R Y  O F  S O L U T I O N  

The Kirkwood-Buff theory (''~ enables us to express the quantity 
(i'N,/ONs)N,v in terms of integrals over the w~rious pair correlation functions. 
Such an expression can be derived for any mixture model. However, the 
general case is fairly complicated and does not lend itself to a simple inter- 
pretation. Hence we shall develop only the case of the TSM and also specialize 
for the limiting case of very dilute solutions of S. It is important to note that 
all quantities appearing on the r.h.s, of Eq. (13) pertain to the "frozen-in" 
system. Therefore we can view our systcm as a virtually three-quasicomponent 
system with compositions Nt,, Nn ,  anti Ns. 

The basic relations employed here are those connection the composition 
fluctuations and the thermodynamic quantilies. 

Let g,~(R) be the angle-averageu pair correlation function, or the radial 
distribution function, for the pair of species i and.i. The following relation 
follows directly from the definitions of the singlet and pair distribution 
functions in the grand canonical ensemble(2~ 

G .  : f ~  [g.(R) -- l ] 4~R 'dR  --- V( (N,N,) (N,'?(N/, 
o , 7 , 1 ] ~ ' : ; @ ; 5  " ( N , /  

(14] 

Here V is the volume, ~J~ is the Kroneckcr delta function, and the angular 
brackets stands for an average in the grand canonical ensemble. The con- 
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nection with thermodynamics is established through tile following relations. 
Detine the matrix elements 

B o :: p,pjG. -! p, 6.  ~]5) 

where p~ is the average number density ~1" the ilia species. The various deriv- 
atives of the chemical potentials required in relation (13) are given by 

[ a~L] k r /~', V, 1', 
F~J = tbNjJe . r .~ . ,  :,  - I  '-B-! K*I/ (i6) 

Here k is the Boltzmann constant, B '~ is the o,factor of the element B,, in 
the determinant [ B l, 17, is the parlial molar volume of the ith species, a~tl 
K* is the isothermal compressibility. The asterisk is added to stress the fact 
that we are working here in the "fr~,mn-in" system. Note also that /% are 
derivatives at P and T constant as required in relation t13). 

We shall now specialize our relation to the limiting case where Ps -~ 0. 
We write 

=:  I +" p L ( J L L  ! pHGml pLptt(GLI.G/tl/ .... G~.) (17) 

"q ~ pL + pu 4 pt.pn(Gt.t. Gm~ 2GLu) ( 1 8 )  

The Kirkwood-Buff theory provides the relations c'~ 

~c* =- ( l / k  T)(~/r 1) 

Vu = [ l  + p,.((;,.,.  (;,.,,)i i,~ 

V L : : :  [ I  ~ [ ) H ( ( ; I I I I  " GL,I)]/~ 7 

(19) 

(20) 

(21) 

The quantities in (19)-(21) pertain to the limiting case P s - *  O, hence 
they are for pure watery 

We shall also need the limiting value of the (static) partial molar volume 
of the solute S. The general relatior, is [see Eq. (13) of Ref. 20] 

Vs* 
p s B  ss v pL BLs "!- pnB  nv 

psZB ss + p ~ B  LL + pnaB nn + 2 p s p . B  us -'- 2pspL BLR :- 2pLpnB Ln 
(22) 

7 Note that in general a quant i ty l ike ,~* is not equal to the experimental isothermal com- 
pressibility o f  pure water. We are here concerned wi th the static part of K only [see 
relation (2.16) o f  R.ef. 2], which devends on the particular choice of  the classification 
into two components. This comment holds for I~L and l~n as well, though an addit ional 
asterisk is not included in the notat ion since these quantities are definable only in the 
" f rozen- in"  system. 
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where the various cofactors are computed I 'rom the determinant 

I B " ~. I 

[ Ps -k- p s 'Gss  pspt.G.st, pspuGsn 
pLpsGLs pt ! pL"GLt, pt.pHGLn 
pHpsGHs pttpt(JHL pn ! pn 'Gnn 

with G,~ :~ Gj,. 
The limiting form of this determinant is 

(23) 

oS" ,0 
', B I -:--~" psptptt~. (241 

Retaining only linear terms in Ps in the numerator and in the denominator of 
(22), wc get 

Vs* "s'"O" ~ pLGLs[I + pt t (Gnn -' Gt.HI] -- pHGns[I : pL(GLL -- Girt.)] 

~! (25a) 
kTK* - pLGLsFL -- p u G u s V .  (25b) 

The last two relations for Vs* arc quite general. They may be applied 
to any real three-component systcm, m which case the asterisk on Vs* is 
redundant. However, in application of TSM, one must add the asterisk to 
indicate that we are referring only to the "static" part of the partial molar 
volume. Some checks of consitency are examined in Appendices A and C. 

We now turn to examine a quantity which tells us in which direction the 
equilibrium L ~ H will be shifted by the addition of S(4): 

t,'(/~L -- /Zn)] k T "  B Ls B us V s * ( V L -  VU) 
{ ~:Ns J ~,.N, = - 1 7  [ . . . . .  I-B - r - - - - -  kTK* ] (26) 

For the first term on the r.h.s, of  (26) we have 

( B Ls -- BnS)/i B I 

[-pspLpu ] GL~ prlGits pLGLs Gtts 1/ 

-~176 (--I/~)[GLs- Gns ~- G,.s(pnGHu : pLGu,) .... Gus(pnGL, i-pLGLL)] 
(27) 

It is now convenient to define the quantity 

A f .  ~-.: G , :  - - G u s  (28) 

which measures the asymmetry in the affinity of S toward the two components 
L and H (see also next section). 
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Using (19)-(21) and (25), we get the limiting form for (26): 

lim [ ~:(ttL /I,,) I k~F._[ p,, A~.,, 
p~ .o ~ N s  JNc.Nn =' . . . . . . . . . .  ( V/ Vjt) ..... /~- ( G l u  

(29) 

where pw -- Pc q- Pn �9 Applying the identity 

Vt.Vu ((, ~jO't..),~l ~ (30) 

we get the final form 

tim ~Ns NL.N H " T I 
,'s'(' -V (Vt j7/i) : p w A L . .  (31) 

The sign of this quantity determincs which of the components L or 1t will be 
"'stabilized" by S. It is instructive to note that the lirst term on the r.h.s, of 
(31) depends only on the propertie:- of the solvent, ~hereas the second term 
depends on lhe difference in the response o f / .  and H to the addition of S. 

In order to determine the amount or stabilization we must turn the 
whole r.h.s, of  Eq. (13). We first note that using the Gibbs Duhem relations 
(for pure water) 

tVl . l~Lc t . '~. , t~l . ,  �9 0 (32)  

Nclzt.ll �9 ,~'itllull 0 (33) 

we get 

t~LL- 21~t_. : #m,  t~. ."XtX.  (34) 

where xc is the mole fraction of the L component in pure water. Using 
relation (16) and the identity (30), v,e get 

tJ-LL - 21zt u & I~uu ]~"I~IxLxItV~I (35) 

Combining (35) with (3t), we ~.et the final limiting expression for lhe 
"stabilization effect" of  S upon L: 

lim [ (~Nl. ] . .~- p.~.~o L ONs J P . T , N w  - A 'LXIt[T/ ( f / I  i,',) : pw At.u] (36) 

"l-his relation is quite gener~d, and may be applied to any t~o-component 
systcm in chemical equilibrium. In our special application we have preserved 
a "degree of freedom" which i~ the choice of a specific "[SM. Nole also that 
by combining the "stabilization effect," (36), wida .~a.v, the heat of conversion 
kTL -- H n ,  we get the corresponding relaxation term of the partial molar 
enthalpy [Eq. (5)]. 
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At this juncture it is appropriate  to digress to a discussion of  some 
concepts like "structural  changes and structure-"breaking" or - "making"  
which are so ubiquitous in the literatt:re concerned with aqueous solutions. 
-Iherc is no unique way of  defining the concept of  the "structure o f  water" 
in the tirst place. ~7~ One practical way it to choose the L form as the onc 
which we believe to be the morc "slruclurcd'" form. A reasonable choice for 
v, atcr ~vould be the molecules having coordinat ion number  equal to four. 
tA morc claborate one would require molecules with four hydrogen bonds, 
but thb,, in turn, requires a definition o f  the concept o f  hydrogen bond.t  
Hence xt, may serve as a measure of  the degree of  structure of  water and (36) 
will express the structural change cau:scd by S. Indeed in some specific ad hoc 
models for water the L form is identil~ed with the "icelike" form which 
rcprcscnts also the more structured form. We shall not riced this specific 
identification in what follows, though v,c acknowledge the fact that it has 
been used as a background motivatiot~ l\~r our interpretations. 

We shall now summarize some general consequences that follow from 
rclation t36). 

I. If either xt, or Xtt is very sm~dl, then clearly the ~tablization ellect 
will bc small, too. This has a direct bearing on the choice o f  a particular 
ad hoc mixture model. For, suppose we detinc the L form to be strictly' 
ice like moleculcsS: then it is likely that x~ x~ill be very small; hence the 
stabilization effect will be small, too. 

2. If the two forms are chosen in such a way that they arc very "similar" 
in the sense that 

Vt. < l ; ,  (37) 

and 

A S . . >  0 138) 

then we shall also have vanishingly small ,,labfl+,'atitm effect. An assumption of  
idcality (in the symmetric sense), though it doc ,  not neccs,,arily imply 
extreme similarity of  the two conlpo l lc t l t s ,  ",h~t~ld be avoided [see also 
Ref. 2). 

3. In a TSM for which xt.vH i.,, not ,,'cry' small and for which Ihc two 

components  differ markedly the whole lcrm on the r.h.s, of  {36) will tend to 
zero as p,. -+ 0. Note that i/-~. - lvu at well as the quantity AtSu becomes 
constant as pw - "  0. [See also relation (C. 10) in Appendix C.] 

4. For  high densities, say whep p,, approaches the close-packing 
density, it is expected that either conditi ,m I or 2 will become effective, i.e., 
if we choose the componen t  to bc dilt'erent, it is likely: that one of  them x~ill 

8 For example, as in the Samoilov modeU -'a' 
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have small concentration. On the other hand, if we choose the two conl- 
ponents to have comparable concentrations, then it is likely that they will 
be similar. Hence in this case we shall also have a v~mishingly small stabilizci- 
tion effect. 

The above considerations are very general and may apply to ~tn 3 tluid. 
It shows that a large stabilization cffcct is attainable under very restricted 
conditions. A reflection on these conditions may suggest a possible molecular 
rcason for such a large effect in water. 

To elucidate this point, suppose wc construct a TSM by making a cutoff 
in a continuous Q C D F  [see, for example, Eq. (2.6) of Ref. 2]. Figure 1 
depicts a possible form of  the function x(,,) for a simple fluid and for water. 
in the first case we expect that the distribution function x(v) will be quitc 
narrow. Hence a choice of  a cutoff point v~* will produce two dissimilar 
components but one of  them will have very low concentration. On the other 
hand, a choice of  v2* will produce two vcry similar componcnts with almost 
equal concentrations. In both casc~, wc :,hall end up with a small stabilization 
effect. Liquid water may have, as one of its uniquc properties, a distribution 
function which is spread over a relatively largc range of values and a cutoff 
point v* may be found in suc~ a way that the t~o components have dil]crent 
properties and comparable concentrations. l-his is illustrated schematically 
in Fig. l(b). A Monte Carlo calculation of the function x(,) has been carried 
out for Lennard-Jones and for "waterlike" particles in two dimensions. ~2~j 

VI* 

X iV] 

\ 

X(VI 

V V* V 

b 

Fig. 1. Schematic possible form of  the distribution function .x(~). (a) A simple fluid 
is expected to have a narrow distribution. ,.," and vz" are two possible cutoff points that 
may be employed to induce a TSM. If the lirbt choice is made, then the product of the two 
mole fractions will be small. In the second choice the product of  the mole fraction may be 
large (maximum value t )  but the two components  will be very simil~r. (b) Possible form 
of  the distribution function for liquid water. Here a cutoff point v* may be found for which 
the two componen t s  are very different, yet the product of lheir mole fractions will not be 
vanishingly small. 
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Some preliminary results indeed show .v(v) tbr the "waterlike'" particle,, 
contains a few peaks compared with esscntially one peak tbr the spherical 
particles. A detailed account of this work will be published at its completion. 

It is important to emphasize that the po,,siblitily of obtaining a large 
slabilization effect does not imply a large n e g a t i c e  relaxation term for say, 
the cnthalpy of solution [see Eq. (2)]. It is the product of the slabilization 
effect and N~. -- Htt which is of importance. This product involves another 
unique feature of  liquid water, akin to the one discusscd in Rcf. 2, and ,,,,ill 
be further examined in the next section. 

Finally, we should like to note some advantages of the Kirkwood Buff 
theory over a previous examination of the stabilization effect/" r i le  most 
important one is that no pairwise-additivity assumption of thc potenlial 
energy is invoked in any stage. A previous treatment of the same problcm 
had been based on the relation between chemical potential and the radial 
distribution function, which explicitly depends on the pairwise-additivity 
assumption. Furthermore, the density dcpcndence ofg,-,(R) is not required in 
the present treatment: the Kirkwood-l:luff theory provides direct relations 
between density derivativatives of the chemical potentials and the various 
. t ' i , (R).  

Thus the only assumption introduced in lhis section involves the applica- 
tion of classical statistical mechanics. We believe that the main result of this 
section will survive in a quantim mechanical extension of the theory. In such 
a case new effects may be found, e.g., effects of  S on thc internal properties 
of watcr molecules, which will superimpose on the classical result obtained 
hcrc. 

4. F U R T H E R  C O N S I D E R A T I O N  O F  T H E  T S M  F O R  
A Q U E O U S  S O L U T I O N S  

Ira Section 2 we have seen that tile relaxation terms of the entropy and 
the enthalpy of S are related to each other: hence il i,; ,;ufficicnt to discuss 
only one of these. 

The standard enthalpy ofsolulion ol'.~, ' may hc written a', 

Ait~.. - -  R ~ " R ~ =- AH~.*. ' (Hr .  �9 HH)I i  N L / z N s ) l v w  

= A H s *  ! v t . v . ( g r .  H.)[rj(V, - V.) " p.'AI.H]s 

(391 

The first term on the r.h.s, of  (39) is the standard enthalpy of solution of S 
in the "frozen-in" system with respect to the conversion l .  ~ -  I L  If we choose 
a TSM for which either x t  or xu is very small or the two components are 
very similar, then Al~'s ~ will be indistinguislmble from A t t s  ~. itowever, for 
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purposes  of  i n t e rp re t a t ion  it is more  useful to select a "ISM in such a way 

that  the re laxa t ion  term will be large and  negat ive,  hence a quaIil~llive 

in t e rp re ta t ion  of  the a n o m a l o u s  x, alt~c o[" ~hc cn tha lpy  (and en l ropy)  of  
so lu t ion  is provided.  

The  re laxa t ion  te rm is bui l t  up of  a p roduc t  o f  fir. / 7 ,  and  the 
s tabi l iza t ion  effect. We  can  enaploy o u r  "degree  of  f r eedom"  and  choose a 

T S M  in which the s tabi l iTat ion effect is posit ive and  then postula te  thai the 

c o r r e s p o n d i n g  f i t .  -- [ l j t  is negative.  A sccoml route  i~ to choose a T S M  
in which H ,  --- /--/n is negal ive  and  Ihcll show that  the shtbilizati~)n effect ix 

positive. 

We  shall ca r ry  ou t  the fo rmer  pn~ccdurc and  d e m o n s t r a t e  !.hal the 

nlolcctzlar or igin  o f  the a n o m a l o u s  proper l tcs  of  aqueous  so lu t ions  are 
s imi lar  to the ones  encoun te r ed  t~: the di~,cu~,si~n o[" pure water  in Ref. 2. 

The  a r g u m e n t s  presented ila this ~,eCtlOn are basical ly qual i ta t ive.  

Nevertheless,  we believe that  they arc reas~)nable and  in con fo rmi ty  ~ i th  

s imi lar  a r g u m e n t s  be ing  appl ied  to ad  hoc mix tu re -mode l  approaches . '  ~' 

We star t  by claoositag a TSM f,,r whic'h //z. - Vu is positive. It is 

p r e sumed  that  in the case o!  water  the dc l in i t ion  of  L and  H in Eq. (2) with,  

say K* .... 4 o r  5 will be satisfactor, , .  I h e  basic ~dea is that  if L is Ihr " low 

local dens i t y "  c o m p o n e n t  and  H is the "'high h)ca[ dens i ty"  c o m p o n e n t ,  then 

a f luc tua t ion  for which  Nt_ increases z~t the expense of  NH will result  a net 
increase  in vo lume,  a i.e. [see also re la t ion  (C.10) in A p p e n d i x  C), 

/)V i 'V 
dV = -~z,-<:~vt. d N L  i '~;;,-c~v, dN , ,  . . . .  ( i ,  V,,) d ,V , . .  . . . .  - 0 (40) 

which means  that  

Since '7 is a lways  posi t ive (see A p p c n d i x  B). ~c  have ~)nc po,,itive term in the 

s tab i l iza t ion  effect m Eq. (36). Nexl we turn  to the q u a n t i t y  A~H, ~h ich  
measures  the a s y m m e t r y  of  the ell"cot o f  S on  L relative to t l .  We claim that 

wi th in  the choice o f  T S M  made  above  this q u a n t i l y  will be posil ivc.  

1he argument is of course not exact. With a choice r '.,;ly A* 4 ill [".q. (2) ~C ~lla', 
think of a pr~xzess in which an t l  molecule is converted to an 1. n~olccule. If dais pn~c,,s 
was the only one taking place, then a net increase in ~oiume is expected. Ilo~cver, this 
process may induce a rearrangeme~t v,'ithHl the H or the /. group of molecules so that 
a decrease in volume will follow. For is~st,l~lt.e, supI~nse that as a result r the con,,ersi~m 
made above, all the molecules with coordination number equal to fi,,e were converted 
to molecules with larger coordination mm~bcr, then such a p~o~.css ~,ould leave NH 
constant yet the net re, suit might be a shrinkage of the volume. "lhe assumption is hcrc 
made that such processea axe unlikely to be the dominant ones. 
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Reca l l ing  the def in i t ion  o f  AS u in (28), we may  write  

- j ~  

" 0 

[gLs(R) " l]4",rR" dR 
t'" 

J 0 

[gLs(R) .... gtts(R)]4rrR" dR 

[.eu.s(R) - 1147rR ~ dR 

[gLs(R)  - gns(R)]47rR" dR (42) 

[n the last  fo rm on  the r.h.s, o f  (42) we have a s sumed  that  there  exists a 

h a r d - c o r e  d i a m e t e r  or,. s , which is c o m m o n  to the L - S  and If--S pairs,  be low 

which the radial  d i s t r i bu t ion  func t i on  vanishes .  TM Vor a re la t ively inert  so lu te  

S v~c may  use the a p p r o x i m a t e  expans ion  valid for R '~,,.s. anti W,, ;' k T ,.~ ! 

g,.,(R) = e x p [ -  W,~')(R)./k T] ~ 1 -- IVan'( R)/k T] (43) 

where  IV)~)(R) is the po ten t i a l  o f  ave rage  force for  the pair  o f  species i a n d j  

at d i s tance  R: hence 

"-- [ll,"2',,s(R) tVJ[~( R)]4 rr R 2 dR (44) 

T h e  genera l  expec ted  fo rms  o f  W)~:.~.~R) and I I ' ~ ( R )  are  depic ted  in Fig. 2. 

Since  t f  must  have  m o r e  ne ighbor s  than an l. molecule ,  it is c lear  that  at 
c2~ 

shor t  d i s tances  near  C*ws, W~Is(R) will q l m v  a repuls ive  b e h a v i o r  re la t ive  to 

T h e  q u a n t i t y  w I ; ] ( R )  --- w~.~s'.(R) is s imply  the work  requi red  to t ransfer  

an S mo lecu l e  at a d i s t ance  R I'rom L to a d is tance  R f rom I!  (see d e m o n s t r a -  

t ion  in Fig. 3). 

Because  o f  the pecu l ia r  b e h a v i o r  o f  1l)~., anti Wt.~ near  ,~,, ~ it i,, c lear  

that  at R ~ c~,~. s this w o r k  o f  t ransfer  will be posi t ive.  M o r e o v e r  ~,ince mos t  

o f  the  c o n t r i b u t i o n  to t he  integral  (441 come~, f rom,  say ' q , s  ~ R ~ 2,~, ~ . 
we c o n c l u d e  tha t  AS u for  o u r  pa r t i cu la r  cho ice  o f  the T S M  will be a pos i t ive  

quan t i ty .  

~o Since both l. and t t  molecules are water molecules, it is alv, ay,, possible to lind such a 
common hard-core diameter aws which ~s roughly equal to (,~w ~ ,,~l 2. One should 
remember lhat g'z..s is essentially the radial dp, tribulion function of 3; around a water 
molecule with the additional restriction that this water n3ol,,zculc mr, st have at most K* 
neighbors in the ~nse of Ref. 2. Similarly, .~',tx involves the restriction that Ihe water 
molecule must have more than K" qeighbors. In bolh cases an impenetrable radius 
should exist which is characteristic of the ~aler.solulc pair. It is po~,sible that for an 
H molecule a larger hard.core diameter x~ill bc clTc~.'ltxc. [.or in,,tance, if ft  is delined 
as a molecule with 12 coordination number, an S molcL.ule ,,,,ill bc excluded from a 
sphere of about ows + ow around the center of H. (See also Fig. 2.) 

S2-".'7/I -z 
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W(Z) |R) LS 
tZl W.S (R| 

V 

W~ts(R). The essential differences Fig. 2. Schematic form of  the functions W~:~(R) and ,z~ 
between the two curves are: (1) Wb~.(R) may exhibit an additional repulsive range, say, 
at aws ~ R ~ ows + ow �9 (2) The first minimum of  It,'~!,~(R) is expected to be shallower 
than the corresponding minimum of  W[~.(R). "lhe quanti ty A~I t in (44) is related to the 
difference of  the two shaded areas under WIfe(R) and IT"~2,~(R). 

�9 �9 

io 

\ 
', / /  \,\ 

Fig. 3. The process of  transferring an S molecule from L to H is depicted in two part~: 
(1) Transfer  o f  S f rom infinity to the distance R from L involves the work W'L~(R). 

Wn.s.(R). (2) Transfer o f  S f rom infinity to a distance R from H involves the work ~2, 
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The positive sign o f d S u  may also be reintcrprcted in terms of  the excess 
"allinity" o f  S to L relative to an H molecule. From the form of,d)~,v in (42) 
it is clear that Ps A S  measures Ihe excess of  S molecules, beyond the dist:lncc 
,~1" a , s ,  a round L relative to H. A positive value of  AS u would mean that 
.S" "prefers"  to be near an L molecule rather than an 11 molecule. In fact lhe 
k,tter interpretation coincides with some specilk: N~odels o f  aqueous solutions 
in which S is allowed to interact only xs.ith one form. hence introducing such 
an asymmetry in the very definition of  the model. r 

So far we have shown that the stabilization ell"cot is positive for this 
particular choice o f  a TSM. We may sum tip the arguments as ['ollov~.s. 
If we choose any TSM for  which one specie~ has lower local density than 
the other, then it is likely that this species xsill have a larger contribution to 
the v,)lurnc and simultaneously ~ will provide more space to accommodate  S, 
hence the equilibrium L :,• t t  will be shifted It,x~ard the L form. 

"l-he unique response o f  water ix nlanifcsted in the following properties. 
In the first place a TSM may be t.3und for which the stabilization effect inay 
be large? z i.e., the conditions listed i~ the end of  the previous section arc 
fulfilled. More inlporlant,  however, is the phenomenon that po3iti~e stabiliza- 
lion ell"cot is coupled with a negative "heat  of  reaction" I/-l~. ll'jr 0). It is 
most instructive to recall that the sign ,~t" the product ( i l l .  - H~t)I Vt - (~;t~ 

~as found to be decisive in explaining the temperature dependence of  the 
volume, cL2~ which in turn reflects the ultique property of  water that "'low 
local density" is on the average related to "s l rong binding energy" fsee 
Appendix B of  Re['. 2). 

Although we have avoided the ~'xplicit introduction of  the concept of  
hydrogen bonds, it is clear that  the L t\3rm chose~l in this section may be 
identified with the hydrogen-bonded ~ l t c r  molecules. We cannot  say 
anything about  the exact geometry of  the molecules surrounding ~uch a 
molecule. For  our  purposes it is sufficient to assume that fully hydrogen- 
bonded molecules have low local density. If these are stabilized by a solute S. 
then it is likely that more hydrogen bonds are induced by the addition of  
such solutes. 

Finally, we should like to comment  nn one interesting feature of  the 
expression (36) for the stabilization effect. Wc note that the effect is built up 
of  two parts. The first, VL-- V~, is purely a property of  the solvent, 

1~ We fecl that the signs of [?l. -- l~t anti ,..l!~t. arc .~onlehox, related to each other. A specie,, 
L which is locally more "'open" is likcly to plovidc nlorc ,,pace to accommodate a solute 
molecule. We did not succeed in establishing such a rclation,,hip, howcvcr. 

*-' By "large," we may be satisfied if the stabilization cllect is of the order of t i n i l y .  Ill 
which case, multiplication by /'/t. - -  I'ttt, which may be of the order of magnitude ol 
hydrogen bond energy, will already prodt,ce a large rclaxation term to the enthalpy of 
solution. 
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whereas A "~ reflects the relalive preference of  S as to the choice of  its 1. l I  

environment.  
The question raised is the following: Is it possible Io lind either a real 

.,,olute S or  a TSM in such a way that A s 0 but at the same time L I I  

i7~. - V~t > 0 ?  If that is possible, wc shall have a somc~ha t  quecr situation: 
that the stabilization effect, though induced by thc presence of  S, is independ- 
ent of  any property of  S, and is purely a properly of  the solvent. *'~ One 
interesting example could be a point particle which does not interact at all 
with the water molecules, (Note lh:lt i f  the solvent molecules have an 
effective hard core of  radius r. then a suitable "ha rd"  point partitle must 
have a radius of  --r .)  In this casc ._1~.. 0 since gt.~(R) - ,t,'H,~R) I. -Ihc 
reason for the "stabil ization" ell'cot in this case is quite clear, for the point 
particle still contributes to the pressure. UJlder constant pressure, the system 
should expand upon the addition of  Ihe~c point particles, hence the L form 
is expected to be more favorable than before. ( l h e  author  is very grateful to 
the referee o f  this article for pointing out this example.) 

5. A P P L I C A T I O N  O F  A C O N T I N U O U S  M I X T U R E - M O D E L  
A P P R O A C H  

ill this section some general co~scquellces o f  the application of  tile 
mixture-model approach to solutions will bc discu.~sed. It will be shown that 
the general concept of  the "structural  changes'" in thc solvent is totally 
dependent on our  choice of  the classilication into components .  Nevcrthclcss, 
for some particular Q C D F  a distin::tion between a static and a relaxation 
term may be useful. 

Let Nw(ct) da be the average number  (in the "r, 1', N . , ,  Ns enscmble) of  
water molecules which are distinguished by some local property having a 
numerical value between a and ~ : d~ [for ct)ncrctcness we refer to the 
cxamplcs given in Rcf. 2]. Similarly A'J / ; )d / ;  i~ the average numbcr  o r s  
molecules classified according to some ~>thcr property, having a value between 
fl and /3 -i d/3. The total energy of  the system may be viewcd either as a 
Jimction of Nw and Ns or as a./unctiotta/ of  Nw(~) and N.~([3). Using the 
latter point of  view, we may apply the generalized Euler theorem to obtain ~ 

/ / E ( N w , N s )  =: E w ( N w , N s ,  ~)Nw(~)d.x ~ f ~ s ( N w , N s , / 3 )  A'~(~)dfl 
t4~) 

is A related case in which the relaxation term ~ purely dcpcndcnt on the property of the 
"solvent" has been demonstrated iv, a simlqilicd model in Ref. 7. 

~4 As in Refs. I and 2, we shall denote the .hole function by Nw and its a component by 
N*v(~). 
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where the par t ia l  mola r  quanti t ies  in (45) are delined as the ftmctional 

derivatives o f  the energy 

E w ( N w ,  N s ,  ,~) h / - (N , . ,  N,).,~,V, (,,0 (46) 

E,s-(Nw, Ns , fi) bI:IN,, , N~),;bNs([3 ) (47) 

and the integrat ions in (45) extend over the whole range of  valucs of  a and 

D' respectivcly. 
The experimental part ial  molar  energy oi" Ihc solute is 

i ~ .  - 
~ E ( N w ,  Ns)  1 

OEw(Nw , N s  , a) Nw(,~) rl~. . 
aNs  

, r -i. Ew(Nw , N s  , eO 

; .L, . ( . . ' , . .  n , . . : h  
I . . . . . . . .  " :%.s . . . . . .  " 

iNs(f l )  J L )  
' " ' ' ' ~  

(48) 
This is the most  general  expression for Es i n  the mixturr , tpproach.  The 
first two terms may be referred to as the "mtatic'" Icrmm and the last two 

as the " r e l axa t i on"  terms for the solute and sol~cn~ distr ibutionn,  respectively. 
In general  the dis t inct ion between the |wo kind~ of  terms strongly depends  
on the choice of  the Q C D F .  It is instruct ivc to demons t ra te  a spccilic choice 
for which E s is purely a re laxat ion tcrm. '~ 

F r o m  here on we shall  specialize For Ihc case of  very dilute solut ions 

(Ps -~ 0) and also assume, for  simplicity,  pairx~isc addi t ivi ty  of  the total 
potent ia l  energy. We now define the fol lowing t ~ o  Q C D F ' s  for W and S: 

Nw(,') := Nw f d V  f d X N p ( x  "~', V),3tB I' "(X ~) - ,.] (49) 

Nx(v) = Ns  f d V  J dXNP(X ' ' ,  I ),S[B["IX") - v I (50) 

~ here X n' s tands  for the conf igurat ion of  tile whole ,> stem o f  N N,. N, 
molecules,  and  P(X re, V) is the proba' .)dlly densily,  in the P, 1, A , . ,  ,V,- 

ensemble,  o f  observing the volume V and configur,t t ion X .'~. The binding 
energies are defined as 

l ~ " " ( x  N) . Y. t_.,'~', '~ (51) 
,I '2 

~ It is a trivial matter to demonstrate the other CXtlcme case for which t-.~ is a pure st,me 
quantity. Choose a TSM with. say PL ~ 0 and from (36) it follows that the corresponding 
relaxation term will be vanishingly small, tot). 
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and 
3; W 

 }7{x'5 ,- )2 c,;;" {52) 

Here U ":w is the solvent-solvent pair potenlial and U "  is the solute .sol~cnl 
pair potential. Note the difference in the dclinitions of B'[" and Bs 

The total energy of the system may be written as 

f f E :~ Nw{w x - '  N.~es x -i 1._. vNw(v) dv -.- vNs(v) dv (53) 

Note that since N.,. is presumed small, ~,olutc-solutc interactions have been 
neglected in (53); c, h is the average kinetic energy per molecule of spcclcb i 
(including any internal energies if exist). Using the normalization conditions 

Nw - f Nw{v) dv (54) 

Ns .- J Ns(v) dv (55) 

we may write (53) in the form 

E ,-= f ({w K + .~v) Nw(v)  dv ~. f (e,x + v) Ns(v) dv (56) 

In this representation we identify the partial molar energies of the quasi- 
components 

Ew(Nw , N s  , v') - 8E/SNw(v')  ---- {w tr -+- �89 (57) 

Es(Nw , N s ,  v") :- 8E/SNs(v") --- es x + v" (58) 

The most significant feature of this classification is that the partial 
molar quantities in {57) and (58) do not depend on the compositions Nw 
and Ns .  Hence, using the general expression in (48), we get for the partial 
molar energy of S 

Es :~ f ({w x -i- �89 d r . .  |" ({s K ' v)t~:Ns(v)/ONs] dv 
J 

{59} 

In this form E s is viewed as apure relaxation quantity. It includes a relaxation 
among the solute species and a relaxation among the solvent species. In 
practical application it is more common to consider only the latter structural 
changes. A different expression for the partial molar energy has been derived 
by Buff and Brout. ~2~1 This relation employs m{}lecular distribution functions 
of order two and three, which, though exact, arc less suitable for our purposes. 
The equivalent expression for Es in {59) is more closely related to current 



Mixture-Model Approach to the Theory o! Classical Fluids. III 23 

ideas on "structural changes" in aqueous solutions. It may also provide a 
useful approximation to Es when the form of the Q C D F  is known [see, for 
example, the case cited in Eq. (71)]. 

Since all the derivatives in (59) are for N,. constant, we have 

and 

f ~wx[c3Nw(u).hJNs] dv " 0 (60) 

f ~sX[ONs(v)/~:Ns] th' := ~ s x (61) 

f v ----~ONs(v) d,,: O~N:~.~'; INs j" vx.dv),tv I ~s..o B,:o. (62) 

where Xs(V) ::: N s ( v ) / N s  is the probability density that a selected S molecule 
will have binding energy between v and ~, i de, and B;]" is the average 
binding energy of the solute to the solvcnl at infinite dilution. 

Using (60)-(62) we may rewrite (59) as 

E s --- r  _a_. B']WF "-' i ,,[; Nw(v)/SNs.] d,, (63) 

Here the partial molar energy is expressed as an average kinetic energy, 
average binding energy to the solvent, and a "L~tructural change" of the 
solvent induced by the addition of the solute. The standard energy of solution 
(at infinite dilution) from the gaseous phase is 

,f A E s "  = B~ '~ .~- 2.  v[i tv,,(,,~+Ns] dv (64) 

Note that for a hard-sphere solute Bi;" 0 and all of the energy of 
solution is interpreted through (64) as "structural changes" in the solvent. 

We shall now briefly mention a second OCDF which is particularly 
useful to express the partial molar volume. The appropriate OCDF i~ the 
one based on the volume of the Voronoi polyhedra discussed in Ref. 2, Let 
N~(r d~ be the average number of  =~ molecules (,~ .. W, S) having Voronoi 
polyhedra of volume between r and r -!. d~. The total volume of the system 
may be expressed as ~.~ 

V(P, T, Nw, Ns) = .(~Nw(~) d~ '.-- I" ~N.s(4) de (65) 
Note that in the construction of the Voronoi polyhedron of each molecule all 
centers of  the molecules, solute and solvent�9 should be considered. The 
partial molar  volume of  S is 

[ aV(Nw, Ns) l j ~:,~,'w(r r , i.t,',.(cb) , ,  = . . . .  + , ,  Fs = k ~ JNW ~p ---:N.:s.-- ~,;cp --~' N s - -  " 
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As in (59), we have, in this representation,  expressed Vs as a pure  relaxation 
quantity.  

At infinite dilution 

lim -a-.-- ::.: 
O.s,~O C1~ 3, 

(67) 

Hence 

v : .  j d4, (68) 

where 4~s" is the average volume of  tile Voronoi  polyhedra of  the solute at 
infinite dilution and the second term is the "structural  change"  of the solvent. 

A t  this stage it is appropr ia te  to reflect on the usefulness of  the mixture- 
model a p p r o a c h )  6 For  concreteness we refc,- to (64). The average binding 
energy of, say, argon to water  and to other liquids such as alcohols is expected 
to be of  similar order  of  magni tude (this statement becomes exact for hard- 
sphere solutes). Hence any dift'ercnce in the energy of  solution of  argon in two 
liquids may  legitimately be assigned to structural changes. Now,  for a ~,implc 
fluid we expect that  the distribution function x(v) will consist of  a single 
sharp peak. A limiting case is a solvent of  hard spheres, for which x(v) -- ,5i,,I 
and hence 

(?,/ONs) I t  f vN(l,)d" 1 0 (69) 

In a simple solvent with a very narrow distribution function x(v)  we  expect 
that  any structural  changes within it.,, ,, components  will not give rise to a 
large relaxation term�9 Next  suppose that  ~a tc r  has a very widely spread 
distribution function such as the one depicte, i in Fig. l(b). As an extreme 
example  the " ideal ized" TSM (see R c f .  2) proposes  that  

Nw(v) =:  N 1 60 ..... I'l) -F N. ,  t3(v - -  v~) ( 7 0 )  

Hence 

A E s "  = B,'"" i .!:fi', v,)(; Nl,"~.Ns')~'.~. (71) 

We have already seen in Sectit,n 3 that 11 the two values "l and v,, arc ~cll 
separated and if x lx~  is not too small, then a large rclaxalion in 1711 is 
expected, which, in principle, may have a different order of  magni tude than 

B0 ~ . 

ts A detailed discussion of the question. "In what sct>c is the mixture model uwful 7, ' 
is presented in Ref. 7, using a very simplified model. 
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If  the real curve o f  Xw(V) looks somewhat  like the one in Fig. l(b), then 
using a cutoff  point v*, we construct a TSM by defining 

. u  i 

N1 : J_. .Vu.(~,) d~, (72) 

N2 , N w - -  ,\'1 1,73) 

and then we rewrite (64) as 

: '  & . . . i . , , . ,  

,w 1 ~ i: F2N~_) ! 
} 

N W  

B,', '~ -F ~ N, [-~-,V.;-J ., .. e, 2 

-F-  2 =-SI- . . . . .  
�9 S " '  w 

I ?fi., 

(74) 

where ~ and r are defined as the average binding energies of  the two con> 
poncnts, respectively. The last form on the r.h.s, of  (74) makes a distinction 
between three kinds o f  structural rearrangements. l-he first include rearrange- 
mcnts within the v components  for which v -  ,,*, the second consists o f  
rearrangements within the v components  for which v .-.:- v*, and the last term 
reflects the rearrangements in which v components  are transferred from one 
group to the second. 

We can now make a general statement on the conditions required for a 
useful TSM. If the real curve x , . ( v )&,  is well concentrated at about  two 
values, say ~ and ~2, then the structural changes within each group of  v 
components  are likely to produce negligible c o n m b u t i o n  to the partial molar 
energy. Therefore the second and third terms in (74) may be absorbed in the 
average binding energy to construct  a new .,,tatic term 

'" ' [ <kl AEs*  := B o -F ~ N l  
, , ' V > N  2 

I g,5,, 
2 :Vo ( . < 7 5 >  

The only impor tant  structural changes will be the ones associated with the 
transfer from one group  to another. Such a transfer carries a relatively large 
value of  fia -- ka, but more  important ,  the stabilization effect is expected to 
be large for reasons given in Section 3. 

Similar arguments  may be employed to construct a useful, say, three- 
structure model, if it turns out that the function xw(v) exhibits three well- 
separated peaks. 
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6. D I S C U S S I O N  A N D  C O N C L U S I O N S  

The most important conclucion of this paper may be stated as follows: 
Various notions like "structure-making'" or "'structure-breaking" effects 
totally depend on how we choose to view the solvent. More specifically, they 
depend on our basic definition of the structure of  water. There is no unique 
way of defining the structure of water, hut once we have adopted a reasonable 
definition, then it becomes meaningful to speak of structural changes in 
various directions. 

One way to invoke the concept of the structure of water is Ihrough the 
mixture-model approach. Here one simply identilics the r of o~1c 
component,  presumed to represent the structure, as an index measuring the 
degree of structure of  the system. For any such a definition one may ask how 
the structure changes by the addition of a solul~,. Section 3 givcs the general 
answer to this question in terms of molecular distribution functions [~ce also 
relation (C.11) in Appendix C]. 

Of course, it would have been dc;irable to ,.tart ~ith the one-component 
point of view (for the solvent) and proceed to carry out all the computations 
and get all answers to our questions. This goal does not seem to bc 
attainable in the foreseeable future. 

Once we have recognized the extrcl~w ~omplcxity c~l" persuing ot~r 
problem along the conventional routes of st:ttl~tical mcchanics, we may either 
abandon the whole area or try to get parlial at~swer.~ by using nonconventional 
routes. It is in this rcspcct that the mixturc-modt-1 approach has been success- 
ful, since it provides a qualitative interpretation for an immcnse body of 
experimental facts on aqueous solutions,. 

We should like to end up with two comments regarding attempts to 
detect structural changes in water. 

One way of measuring such an effect is to apply a computer-experimcnl 
technique, by the use of  which a simulatio~ of the properties of  the system of  
interest may be attained. In particular, all ~f TIle qtmsicomponent distribution 
functions may be computed and their responses to addition of a solute n~ly 
bc studied. The severe conditions required to achieve a large relaxation cflL'ct 
should be borne in mind, however. O~,c naz~y casily miss such an elTcct by :~r~ 
improper choice of  molecular, as well a~ thcrJ~lodynamic, parameters For tl~c 
system. 

A second way of detecting a stabillzz~tion effect m through experimental 
methods. Here there is the ambiguity oF interpreting an experimental quantity 
in terms of structural changes, in the lirst place. But more important, it1 
most cases one attempts to estimale directly the structural change, say A:V L 
induced by the addition of ANs molc~ of solute. For very small /IN, the 
corresponding ANz is also small and may be undetectable. For large A,'~'~ tt 
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is possible that  the stabilization eflc~t has already become small or even 
changcd sign, hence again a large value of A N t .  may be undetectable. These 
considerat ions do not apply  to the partial molar  quantities discussed i~ this 
paper.  Here the slope itself, i . JNL/ i :Ns ,  cnters, and not d N t .  ; hence a large 
contr ibut ion f rom structural changes may bc revealed even at infinite 
dilution, p s  --~ O. 

A P P E N D I X  A.  E X A M I N A T I O N  O F  S O M E  L I M I T I N G  CASES 

We have seen in section 3 that  the stabilization effect tends to zero at 
one of  the following limiting cases: (I)  when either xt. or xu is very small, 
(2) when the two componen t s  are very similar. We shall now show that  the 
static term, say, o f  the partial  molar  volume of  S has the correct  l\3rm at 
these limiting cases. 

I. To  get a TSM for which, say xt. is very small, we choose any QCDI-' ,  
say x(v), and define 

x L  .- . x ( v )  d r ,  x u  = 1 .... XL (A.I )  

Clearly if ~ -~ 0, we get 

xt. --" 0, On ~ p w  , G u n  .... G . . .  . G n s  - ~  G , , s  , Vu  --* V--w 

Hence the static partial  mola r  volume m (25) tends to 

k s *  --+ [1 -~-pw(Gw,, . . . .  G w s ) ] / p w  (A.2) 

which is the correct fo rm of  the limiting partial molar  volume of  S in water.  

2. To  get a T S M  with very similar components ,  one makes  an 
appropr ia te  division of  the v axis, v x , v z ,..., and defines 

f 
Vt ~1 

xL = Y'. x(v) dv, xu --= 1 - -  XL (A.3) 
/ , = o d d  ~ 

Clearly if the invervals v,+~ - -  v, become very small, then the two species 
become very similar; hence 

G L s  ~"  G n s  "~  G w s ,  GLL :'~ G n n  "~ G L n  ~'~ G w w ,  i:L "~  V n  : ~  V w  

and the static partial  mo la r  vo lume of  S in (25) tends to 

V s *  ~ [1 5- p w ( G w w  --  G w s ) ] / p w  (A.4) 

which is again the correct  fo rm of  the limiting partial molar  volume of  S in 
water. 
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A P P E N D I X  B. F O R M A L  PROOF T H A T  ~ I> 0 

For any two-component system with species ~ and fl let 

Ao - N ,  -- <N& (a.I) 

A .  -_ N,, .... <N,,> (B .2)  

be defined in the grand canonical ensemble, Relation (14) may be written as 

( A A ~  : V(p,p,~G~l~ ~- p~(S~l~) (B.3) 

consider the average 

p~ p~ p2 ; p". p~p~ 

[p.2G~.pf,~- p~ + p~O-G~p, 2-i- p,, _ 2Goa] V 

V 
- [P~ -'- Pn -'.- p~pn(Go~ § Ga,, - 2G~,t~)] 

P~Pn (B.4) 

Hence, from the definition of'q in (18) it follows that 

77 . :0  

This result is also consistent with the implication of the stability condition 
applied to (35). 

A P P E N D I X  C. A CHECK OF C O N S I S T E N C Y  

In Appendix A we have shown that at two limiting cases V s * - ~  V s 
(at infinite dilution). Here a stronger test of consistency is examined. The total 
partial molar volume F s in the TSM representation 

Vs : Vs* -!- (F+. .- Vn)(~ 'Nd~Ns)Nw (C.I) 

must be independent of the particular choice of the TSM (though each term 
depends on the classification procedure). 

To show this, we need the following general relations between the various 
Gt,~  . 

For any distance R conservation of the total water molecules around S 
requires that 

pt tgns(R)  + P ~ L s ( R )  " - pwgws(R)  (C.2) 
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where gws(R) is the radial distribution function for a water molecule (any) 
around S. Similarly we get the following Iwo conservation relations; 

pLgLL(R)-~ pngnL(R) p,L,,.t.(R) ((7.3) 

pstg.n(R) i pt.gt..(R) p.,'r (('.4) 

I. %ng the definition of G,.~, we may integrate lhcse relations to obtain 

pnG.s  -i- pLGt_s- 

pLGt I. F puGnL 

pnGn.  i pI.Gnt 

The last two may be combined to get 

P,, r (C.5) 

P,, (;wt. (C.6) 

: p . ' ( iw.  (C.7) 

pt."Gt.t. ~-pn2Gn. i 2pt.pnGnL - p.'(pt.G.'1 i p . ( i . . . ) ,  p.."Gww (C.8) 

Relations (C.5) and (C.8) form the link bct~ccn the I ~ M  and the one- 
componcnt (for that water) points of view. Applying thc.,,e rclations to (C. 1), 
we get, after some algebra, the expectcd rchttion for 17~. : 

Vs- :-: (I/pw)(I t. p,,.(;,,.,, p,, G,,..,) (C.9) 

which is independent of the particular classilication. Relations (C.6) and 
(C.7) may also be used to get a simple relation for the difference 

VL .... Pn --= (p../71)4G.. ~',, D IC. 10) 

qhc requirement that Vt. V, be positive is therefore cquivalcnt to the 
statement that the average number of  excess water molecule', around It is 
larger than the average number of  exces,, water m,,Icculcs around L. 

With the help of  (C.10) the expression for thc stabilization effect may 
be rewritten in term of molecular properties. 

lira (~Nt./~Ns)xw-- xLxupw[(Gw. G w t )  . (GL~.  G.~) ]  (C.11) 
~,.y , 0  
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