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An extension of the mixture-model approach to the theory of liquid water
is devcloped to include aqueous soltutions of nonelectrolytes. The Kirkwood-
Buff theoty of solution is employcd to obtain a general and exact expression
for the *‘stabilization effect’ induced by the solute. This relation is applied,
in the framework of a two-structure model, to obtain further insight into the
molecular origin of some anomalous thermodynamic properties of aqueous
solutions. The generalized continuous mixturc-model formalism is also
extended to solutions. It is demonstrated that current concepts such as
“structural changes” in the solvent are strongly dependent on the particular
classification procedure adopted to construct the mixture model.
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1. INTRODUCTION

In the previous articles™? of this series @ mixture-model approach has
been developed and applied to the thcory of liquid water. This paper
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extends the application of this approach 1o aqueous solutions of non-
electrolytes.

It 1s now well known that aqueous solutions of nonelectrolytes reveal
somc outstanding properties in comparison with the corresponding non-
aqucous solutions.? For example, the entropy and the enthalpy of solution
of argon in water are distinctly more negative than the corresponding values
in other fluids for which data are available.*®

[t has long been postulated that “structural changes’™ in water should
hold the clues for this apparently anomalous behavior. An carlier example of
apphcation of the mixture-model idea to explain a puzziing observation is
following." Addition of soine solutes such as cther or methyl acetate to
waler was known 1o decrease the compressibility of the system in spite of
the fact that the compressibility of these pure liquids is a few umes larger
than that of pure water. It has been postulated that water 1s “*built up” of
at least two species (say, monomers and polymers of water molecules, the
latter species supposedly having higher compressibility). Addition of solute
causes a shift toward that component which has lower compressibility
hence a qualitative explanation of the obscrvable effect was provided.?

So far concepts like the “structure of water™ and “'structural changes™
induced by a solute were used either within the framework of an ad hoc
mixture model for water or in connection with some cexperimental observa-
tion. The latter has been interpreted in terms of these concepts although
precise definitions have been lacking. Bernal and Fowler'® have introduced
the concept of *‘structural temperatures”™ which. although not providing a
definition of the “‘structure,” giver a useful qualitative way of correlating
changes of structure due to the addition of solute with changes of structure
caused by changes of temperature. Such a correlation is based on the premise
that we “know” that any reasonable quantity defining the “structure of
water” would probably decrcase upon increasing the temperature.?

Frank and Evans,® in an effort to explain the anomalous thermodynanic
behavior of aqueous soluticns, have ntroduced the idea of an “icebery
formation™ around the solute. Further rescarch in this field has been con-
centrated on the following two main questions: (1) What is the structurce
of the immediate environmert of a solutc molecule in water? (2) What are
the molecular reasons for the phenomenu of “'structural changes™ if any

t For a review mainly concerned with th> experimental aspects of this topic see Ref. 3.
i‘or a review of some theoretical aspects see Ref. 4.

3 This “explanation’ is not satisfactory, however, even on qualitative grounds. tor,
suppose that we knew that the solute has shifted the equilibrium toward the component
with lower compressibility; there is still an unknown effect on the relaxation term [see
Eq. (2.16) of Ref. 2] that we cannot predict even in a qualitative manner.

¢ A more detailed discussion of this subject 15 given in Ref. 7.
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This paper is concerned with the second question. One should bear in
mind that almost all theories of “*structural changes™ are decply anchored
in some specific ad hoc mixture model for water.® It is therefore no wonder
that some serious doubts have been cast upon their validity. Moreover, even
the very application of the mixture-model idea has been called in question
and vigorously criticized as being unsupported on experimental grounds.
(It is instructive to note that even the example cited above on the effect of
solute on the compressibility was presented!™ as “a most impressive picce
of evidence for the theory of nolymerization of water™). In parts [ and 1l
of this series an exact mixture-model approach has been developed, which
does not require any experimentz! evidence for its support.

[n this paper an attempt is made to accommodate some of the current
concepts and ideas prevailing in the literature on aqueous solutions into an
exact framework. Although we shall be using classical statistical mechanics
throughout, we feel that the basic arguments and conclusions will sull be
valid in a quantum mechanical extension of the theory. The most important
feature of the classical treatment is that all internal propertics of a single
water molecule are assumed to be scparable from the total partition function
(these may be treated either classically or quantum mechanically) and arc
presumed not to be affected by the type ol environment of the molecule.
In particular, we shall assume that a solute adjacent to a water molecule
does not affect its internal propertics. The latter could have been accounted
for only by using quantum mechanical langzuage.

Our starting point will be the gencral tormalism of quasicomponent
distribution functions-2 (QCDF) which enubles us to view a one-component
system as a mixture of any number of quasicomponents. The simplest of
these 1s the so-called *“two-structure model”™ (1SM). The term “model™ 15
somewhat misused here in the sense that no modelistic assumptions are
invoked in the construction of TSM.

In the next section the main problen 1s formulated in the TSM. The
Kirkwood-Buff®® theory of solution is employed in Section 3 to examine the
molecular origin of the “structural changes™ induced by a solute. The main
result of this section is the general expression {valid tor any TSM) for the
*“stabilization effect” of the solutc on one of the components. denoted by L:
it reads

ja) N
})in}) (%%’p.rww R YAV LTRN Fw) - pw dia) th
where x; and x;; are the mole fractions of the two components L and H.
V. and Vy are their partial molar voluracs. p,- p, * py is the total density

s Some specific applications of the mixturc-model approach to aqueous solutions of non-
clectrolytes are given in Refs. 7 and 9-1Y.
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of the liquid, and n and 47, are quantities to be defined in (18) and (28),
respectively. Though ¥, and ¥, may also be expressed in terms of molecular
quantities, the expression was found miorc useful for purposes of inter-
pretation. Some exact consequences of this results are discussed in Section 3.
Section 4 is devoted to a more qualitative analysis of relation (1). Some
speculations as to the molecular orizin of the thermodynamic propertics off
aqueous solutions are discussed.~T he central conclusion of this section may
be summarized as follows: If we classified the water molecules into two
components, one with rels»~vely “‘low local density” (L) and the other with
relatively *‘high loe-? uensity” (#), then a solute S is likely to be accom-
modated nep~ € former species. This species will thercfore be stabilized. in
the sere-uat the derivative (1) is nositive. The unique response of water is
maested in the coupling of a negative heat transfer, A, — H,, to the
«itive “stabilization effect,” thus producing a large, negative relaxation
**.rm to the partial molar enthalpy of the solute. It turns out that this peculiar
coupling is almost exactly the same argument employed to explain the
anomalous temperature depsndence of the volume of water. (12
Section 5 is devoted to some gencral aspects of the mixture-model
approach. It is demonstrated that the split of any partial molar quantity of
the solute into “static” and “‘relaxation” terms strongly depends on the way
we like to view the solvent. Also, the identification of the “structural changes”
in the solvent, though a useful concept in some cases, is purely a matter of
choice of the particular QCDF.

2, THERMODYNAMIC TREATMENT

In this section we shall formulate some of the thermodynamic quantities
pertinent to aqucous solutions in the same theoretical framework that has
been applied to pure liquid in Refs. I and 2. The system under consideration
consists of Ny water molecules and N solute molecules (later we shall
restrict the discussion to the case N, -" Ny) at a given pressure P and
temperature T (P and T will henceforth be always kept constant and will be
omitted from the notations).

All the treatment in this and the following section will apply to any
possible TSM. As a concrete example we may think of the one based on the
concept of coordination number, namely -

X

fVL ! Z IVK 12)
A -

N!i = X NK (3)

K--K*1
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and

Ny Nyt Ny (4

Here Ny is the average number of water molecules having coordination
number® equal to K. The number K* is selected i1n order to induce a distinction
between a ‘‘low local density” component L and a *‘high local density™
component H.

We shall henceforth use the variables N, and N, for the average number
of molecules of the two specics L and /1: however, these are not necessarily
the ones defined in (2) and (3). We shall thus reserve the freedom of selecting
any specific TSM, and in this sense the Ircatment will be quite general. At a
point where interpretation is called on it will be found uscful to employ the
specilic example cited above with a choice of A*as 4 or 5.

Any extensive thermodynamic quantity may be viewed as cither a
function of (P, T, Ny, Ng) or of (P, T, N, . N, . Ng). Note that a QCDF
has been applied only to the water molccules; a more general case will be
treated in Section 5. The partial molar enthalpy, entropy, and free energy of
the solute S may be written as

H = _G_f[_ — _Q_H_ A 7] ENL
}{S B ( aNS‘ )I\ - ( 6N\~ Ny Ny (Hl }{H) ( ‘VS Nw
== H.&;* ‘I' AHSr (5)
S, (5 (28 (s _‘_/Y.@_
Sy = ( @Ns) o ( aN )""'.,.Nu (S, SII)( )-"Vw
= SS* + Assr (6)
= —-E— — __aﬁ_ . ( ’VL
Hs = ( N )Nw = ( N, )NL.N,, Sy - o) (
= ps* 4 dps” )

In each case the first term on the r.h.s., with an asterisk, is rcterred to as the
“'static” part, and the second ac the “relaxation” part, of the corresponding
partial molar quantity.

A general and important result follows immediately from the condition
of ““chemical equilibrium”;

He ~ Hu (8)

% Note that in counting neighbors in aqueous sojutions we may either count all molecules
which fall in the R¢ sphere (see Ref. I) of a given molecule, or count only water molecules.
In both cases we get a proper QCDF; the latter point of view scems more useful for the
purpose of this article and will be adopted throughout.
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Hence from (7) we get
fs st 9)

i.¢., for any classification into two components the contribution from the
relaxation term to the chemical potential pg vanishes. This conclusion is also
valid for any multicomponent mixturc-model approach. Furthermore, it
follows from (8) that

H, - 15, H, - TS, (10)

or equivalently
AH . T A4S (1

which means that the relaxation part of H ¢ exactly compensaltes the relaxation
part of TS, . This may be viewed as a general formulation of the “enthalpy -
entropy compensation” phenomenon,? which, again, is valid for anv
mixture-model approach.

The traditional interpretation of the large, negative enthalpy and entropy
of solution of a nonelectrolyte in water is the following.' Qnce identifies the /.
form with the hydrogen-bonded water molecules and the // form with the
nonbonded molecules; hence it is expected that H, — H,, will be negative.
If in addition we postulate that the solute S “stabilizes™ the L form, i.c., that

(EN NGy, - 0 (12)

then the relaxation part of Hy (and hence of S,) will be negative. Since the
transfer from the H form to the /. form is expected to involve formation of
hydrogen bonds, these relaxation quanuities urc expected to be large and
negative—hence a reasonably qualitative interpretation for the observable
phenomena is attained.

We believe that the above rcasoning is basically correct. The tact that
the quantity H; — Hy is negative may be accepted by virtue of the definition
of the two components, and does not necessarily involve the concept of the
hydrogen bond. The crucial question may be stated as follows: Suppose we
have chosen the two components in such a way that H, — I, -2 0; how
do we know that in this case the stabilization effect is positive ? Or converscly,
we could have chosen the two components in such a way that (12) s valid:
then the question may be raised about the sign of A, — H,, . These questions
have been studied by many authors'®!*" by using ad lioc model for water.

The central theme of this paper is to examine the exact condition under
which a stabilization of, say, the L form occurs. The tactic of the present
investigation differs from the traditional one, where a model for water is
assumed and then the condition (12) is examined. We shall first derive a
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general and exact expression for the derivative (N, [0N)y,, which 1s valid
for any TSM. Then we shall seek the general requirements under which this
derivative is positive.

A convenient starting point for our investigation is the thermodynamic
identity9

(13)

) (e L
[ Sxt ]Nw oo —~(per - 2pn Pa) ! [_(/_’(;.;_\_/x’_.”_)]‘v,w”
where u,; = ¢2G[ON; ¢N;, and ihe quantity p;; — 2upy - ppn is always
positive. =2

The advantage of using the identity (13) is twofold. In the first place
the problem of finding the sign of (¢N,/éNy)y,, In the cquilibrated system,
with respect to the equilibrium L — £, 1s reformulated, on the r.hs. of (13),
in a system where the equilibrium has been “‘frozen in.” Second, all of the
derivatives appearing on the r.h.s. of (13) may be expressed in terms of
molecular quantities through the Kirkwood-Buff theory of solution, a feature
which wili be exploited in the next section.

3. APPLICATION OF THE KIRKWOOD-BUFF
THEORY OF SOLUTION

The Kirkwood-Buff thcory®® cnables us to express the quantity
(¢N([ONg)y,, in terms of integrals over the various pair correlation functions.
Such an expression can be derived for any mixture model. However, the
general case 1s fairly complicated and docs not lend itsell to a simple inter-
pretation. Hence we shall develop unly the case of the TSM and also specialize
for the limiting case of very dilute solutions of 8. 1t is important to note that
all quantities appearing on the r.h.s. ot Eq. (13) pertain Lo the “frozen-in”
system. Therefore we can view our system as a virtually threc-quasicomponent
system with compositions N, , Ny, and V.

The basic relations employed here are those connection the composition
fluctuations and the thermodynamic quantities.

Let g.,(R) be the angle-averaged pair corrclation function, or the radial
distribution function, for the pair of spccics  and j. The following relation
follows directly from the definitions of the singlet and pair distribution
functions in the grand canonical enscmblet??:

__<N1N1> <Nz>\/N, 5!1' )

e [T 1A R) — 2dR = V' A VASACE
Gy, jo [g(R) — 14nR2dR = V' ( RS N
(14)

Here V is the volume, &, is the Kronecker delta function, and the angular
brackets stands for an average in the grand canonical ensemble. The con-
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nection with thermodynamics is established through the fotlowing relations.
Define the matrix clements

B« pp,G,, iops 3, (15)

where p; is the average number density of the ith species. The various deriv-
atives of the chemical potentials required in relation (13) are given by

V.
K

dpte ) kT B VT a6

— 7
By = [VNIJP,T,M_W g e
Here k is the Boltzmann constant, #'/ is the cofactor of the clement B,, in
the determinant | B, V, is the partial molar volume of the ith species, and -
x* is the isothermal compressibility. The asterisk is added to stress the fact
that we are working here in the “frozen-in” system. Note also that y,; are
derivatives at P and T constant as rcquired i relation (13).

We shall now specialize our relation to the limiting case where p; - 0.

We write
L=+ pGrr b puGun peplGuGuy — Gin) (N
n = pe+ pu+t pipu(Grr - Guu - 2G ) (18)

The Kirkwood-Buff theory provides the relations!®?

w* = (1/kT)Lm (19)
Py =11 + plGr Godlim (20)
Vi (U puGuy -~ Gondlin (21)

The quantities in (19)-(21) peitain to the limiting casc pg -~ 0, hence
they are for pure water.’

We shall also need the limiting value of the (static) partial molar volume
of the solute S. The general relation is [see Eq. (13) of Ref. 20]

psB.SS -+ PLBLS 'lf' PHBH.\'

= ps2BSS 1= p ABLL | p 2BHR L 2ppBHS 1 2psp BLS - 2P[:p—’;—B—EH
(22)

Vs*

7 Note that in general a quantity like x* is not equal 1o the experimental isothermal com-
pressibility of pure water. We are here concerned with the static part of x only [sce
relation (2.16) of Ref. 2], which depends on the particular choice of the classification
into two components. This comment holds for P, and Py as well, though an additional
asterisk is not included in the notation since these quantities are definabic only in the
“frozen-in" system.
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where the various cofactors are computed from the determinant

ps -+ ps*Gys pspilst pspnlGsu
| B - I prpsGs pr b pPGyy prpuCion 23
pupsGus pupiGuL e | oputGun

Wl[h (l‘“' e (I‘j,‘ .
The limiting form of this determinaut 1s
.0
B " psprpnl (24)

Retaining only linear terms in pg in the numerator and in the denominator of
(22), we get
Y * o520 & puGusll + pulGauy — Guwd| = puGasll @ plGrr — Gudl]

3 K (25a)
kTe* — p,G sV — puGusVu (25b)

The last two relations for V* arc quite general. They may be applied
to any real threc-component system, in which case the asterisk on Vg* is
redundant. However, in application of TSM, one must add the asterisk to
indicate that we are referring only to the *‘static” part of the partial molar
volume. Some checks of consitency are examined in Appendices A and C.

We now turn to examine a quantity which tells us in which direction the
equilibrium L == H will be shifted by the addition of $:

Upr — pn) _ kT B BY Vs (Vi — Vi)
[ N ]NL-NH R l W kTr* ] (26)

FFor the first term on the r.h.s. of (26) we have

(BLS - BHS)/| B|

Gis puGus . pilys Gus '
. sopn |, B
[ psprHl Gy, 1+ PHOHH\ PspLpi | 4+ pGre Gy ]/I |
._‘0 al .
B, (— I/D[GLS — Gus + GLS(PHGHII c piGoy) GIIS(PHGLH i PLGLL)]
(27)
It is now convenient to define the quantity

Aiy = Gris — Gys (28)

which measures the asymmetry in the affinity of S toward the two components
L and H (see also next section).
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Using (19)-(21) and (25), we get the imiting form for (26):

. (#L : #H) ) /\ f : Pw A}Y,u . , =
r!in}’ o'NS ]NL.NH N (v, Vi C_ (G by Vﬁu)}
. 129)
where py == p; 4- py . Applying the identity
ViV (& nGoy)y® (30)
we get the final form
. Te(pr — pa)j /\ f 5oy LAZ
tl’lsm" [ Ny JNL.NH Vi V) i ] G

The sign of this quantity determines which of the components L or H will be
“stabilized™ by S. It is instructive to note that the first term on the r.h.s. of
(31) depends only on the propertie: of the solvent, whereas the second term
depends on the difference in the response of £, and H to the addition of S.

In order to determine the amount of stabilization we must turn the
whole r.h.s. of Eq. (13). We first note that using the Gibbs: Duhem relations
(for pure water)

Nopoe 4 Ny - 0 (32)
N - Napiy 0 (33)

we get
piL - 2pen o Boa' XXy (34)

where x, is the mole fraction of the L component in pure water. Using
relation (16) and the identity (30), we gel

e = 2+ pame KTIxpxy by {35)

Combining (35) with (31), we get the final limiting expression for the
“stabilization effect” of S upon L:

. N, . s
< - Xy 1% 14 : 6
3\'\% [ TN ]P . AATIL Wy L opw A (36)

This relation is quite general, and may be applied to any two-component
system in chemical equilibrium. In our special application we have preserved
a “degree of freedom™ which 1< the choice of a specific TSM. Note also that
by combining the ‘‘stabilization effect,”” (36), with say, the heat of conversion
H, — H, , we get the corresponding relaxation term of the partial molar

enthalpy [Eq. (5)].



Mixture-Model Approach to the Theory of Classicai Fluids. II{ 13

At this juncture it ts appropriate to digress to a discussion of some
concepts like “structural changes™ and structure-"‘breaking™ or -“‘making”
which are so ubiquitous 1n the literature concerned with agueous solutions.
There s no unique way of defining the concept of the “‘structure of water™
in the first place.” One practical way is o choose the L form as the one
which we believe to be the more “'structured™ form. A reasonable choice for
water would be the molecules having coordination number equal to four.
{A morc claborate one would require molecules with tour hydrogen bonds,
but this, in turn, requires a definition of the concept of hydrogen bond.)
Hence x, may serve as a measure of the degree of structure of water and (36)
will express the structural change caused by S. Indeed in some specific ad hoc
models for water the L form is identihed with the “icelike™ form which
represents also the more structured form. We shall not need this specific
identification in what follows, though we acknowledge the fact that it has
been used as a background motivation for our interpretations.

We shall now summarize some general consequences that follow from
relation (36).

I, If either x, or Xy s very small, then clearly the stablization ctiect
will be small, too. This has a direct bearing on the choice of a particular
ad hoc mixture model. For, supposc we define the L form to be strictly
ice like molecules®; then it is likelv that x; will be very small; hence the
stabilization effect will be small, too.

2. If the two forms are chosen in such a way that they are very “similar™
in the sense that

Vi s by (37)
and
A}g.// S (3%)

then we shall also have vanishingly small stabilization effect. An ussumption of
ideality (in the symmetric sense), though it does not necessarily  imply
cxtreme similarity of the two components, should be avoided (see also
Ref. 2).
3. In a TSM for which x.x,; i1s not very smull and tor which the two
components differ markedly the whole term on the r.hos. of (360) will tend to
zeto as py — 0. Note that ¥, - I, as well as the quantity 43, becomes
constant as py. —> 0. [See also relation (C.10) in Appendix C.]

4. For high densities, say when p, approaches the close-packing
density, it is expected that either condition I or 2 will become effective, ie.,
it we choose the component to be different, 1t is likely that one of them will

® For example, as in the Samoilov model."**
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have small concentration. On the other hand, it we choose the two com-
ponents to have comparable concentrations. then it is likely that they will
be similar. Hence in this case we shall also have a vanishingly smail stabiliza-
tion cffect.

The above considerations are very gencral and may apply to any fluid.
It shows that a large stabilization cflect is attainable under very restricted
conditions. A reflection on these conditions may suggest a possible molecular
reason for such a large effect in water.

To elucidate this point, suppose we construct a TSM by making a cutoff
in a continuous QCDF [see, for example, Eq. (2.6) of Ref. 2]. Figure 1
depicts a possible form of the funciion x(v) for a simple fluid and for water.
In the first case we expect that the distribution function x(v) will be quite
narrow. Hence a choice of a cutoff point v;* will produce two dissimilar
components but one of them will have very low concentration. On the other
hand, a choice of v,* will produce two very similar components with almost
equal concentrations. In both cases we shall end up with a small stabilization
effect. Liquid water may have, as onc of its uniguc properties, a distribution
function which is spread over a rclatively large range of values and a cutoll
point v* may be found in suchk a way that the two components have different
properties and comparable concentrations. This is illustrated schematically
in Fig. [{b). A Monte Carlo calculation of the function x(r) has been carried
out for Lennard-Jones and tor “‘waterlike” particles in two dimensions. 2%

X iv)

[0 Sy R

Ne
<

Q b

Fig. 1. Schematic possible form of the distribution function x(s). (a) A simple fluid
is expected to have a narrow distribution. «* und »,* are two possible cutoff points that
may be employed to induce a TSM. If the lirst choice is made, then the product of the two
molc fractions will be small. In the second choice the product of the mole fraction may be
large (maximum value }) but the two components will be very similar. (b) Possible form
of the distribution function for liquid water. Here a cutoff point v* may be found for which
the two components are very different, yet the product of their mole fractions will not be
vanishingly small.
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Some preliminary results indeed show x(v) for the “waterlike™ particles
contains a few peaks compared with essentially one peak for the spherical
particles. A detailed account of this work will be published at its completion.

{t is important to emphasize that the possiblitity of obtaining a large
stabtlization effect does not imply a large negative relaxation term for say,
the cnthalpy of solution [sec Eq. (2)]. It is the product of the stabilization
effect and H, -- H, which is of importance. This product involves another
unique feature of liquid water, akin to the one discussed in Ref. 2, and will
be further examined in the next section.

Finally, we should like to note some advantages of the Kirkwood Buff
theory over a previous examination of the stabilization effect.*? The most
important one is that no pairwise-additivity assumption of the potential
cnergy is invoked in any stage. A previous treatment of the same problem
had been based on the relation between chemical potential and the radial
distribution function, which explicitly depends on the pairwise-additivity
assumption. Furthermore, the density dependence of g,,( R) is not required in
the present treatment: the Kirkwood-Bull theory provides direct relations
between density derivativatives of the chemical potentials and the various
(R).

Thus the only assumption introduced in this section involves the applica-
tion of classical statistical mechanics. We believe that the main result of this
section will survive in a quantim mechanical extension of the theory. In such
a case new effects may be found, c.g., elfects of S on the internal propertics
of watcr molecules, which will superimpose on the classical result obtained
here. .

4. FURTHER CONSIDERATION OF THE TSM FOR
AQUEOUS SOLUTIONS

tn Section 2 we have seen that the relaxation terms of the entropy and
the enthalpy of S are related to each other: hence it is sufficient to discuss
only one of these.

The standard enthalpy of solution of S may he written as

Aﬁx o H%l a ﬁ?sa - AHS* ' (Hl. ) HH)("',VL/‘(NS)NW

= 4dHs* . -\'/,"H(F’L ﬁH)[7I( l7/ - V) - /’li’AfH]
(39)
The first term on the r.h.s. of (39) is the standard enthalpy of solution of S
in the **frozen-in” system with respect to the conversion L = /1. [f we choose
a TSM for which either x; or x; is very small or the two components are
very similar, then 4H° will be indistinguishable from 44 *. However, for



16 A. Ben-Naim

purposes of interpretation it is more useful to sclect a TSM in such a way
that the relaxation term will be large and negative: hence a qualitative
interpretation of the anomalous value of the enthalpy (and entropy) of
solution is provided.

The relaxation term is built up ot a product of H, f, and the
stabilization effect. We can employ our “Jegree of freedom™ and choose a
TSM in which the stabilization effect is positive and then postulate that the
corresponding H, —~ Hy is negative. A sccond route is to choose a TSM
in which H, — H, is negative and then show that the stabilization effect is
positive.

We shall carry out the former procedure and demonstrate that the
molecular origin of the anomalous properties of aqueous solutions are
similar to the ones encountercd 111 the discussion of pure water in Ret. 2.

The arguments presented in this section are basically qualitative.
Nevertheless, we believe that they wre reasonable and in conformity with
similar arguments being applied to ad fioc mixture-model approaches.'"

We start by choosing a TSM for which V7, - ¥V, is positive. It is
presumed that in the case o! water the detinition of L and H 1n Eq. (2) with,
say K* == 4 or 5 will be satisfactory. The basic wdea is that if L is the “low
local density™ component and H is the “high local density™ component, then
a fluctuation for which N, increases at the expense of A, will result a net
increase in volume,? i.e. [see also relation (C.10) in Appendix C),

oV

) oV —
(/‘ == '(;'NL dNL | ('N;, l/N” o (l, V”)l/!\/,' oo T () (40)

which means that
L, l",, 0 (41)

Since 7 1s always positive (sec Appendix B). we have one positive term in the
stabilization effect in Eq. (36). Next wc turn to the quantity 4;,,, which
measures the asymmetry of the eifect of S on L relative to H. We claim that
within the choice of TSM made above this quantity will be positive.

¥ The argument is of course not cxact. With a choice of, say A* 410 Eg. (2) we may
think of a process in which an // moleculice is converted to an 7. molecule. If this process
was the only one taking place, then a neo increase in voiume is expected. However, this
process may induce a rearrangement within the K or the 1 group of molecules so that
a decrease in volume will follow. For instance. suprose that as a result of the conversion
made above, all the molecules with coordination number equil to five were converted
to molecules with larger coordination numbcr; then such a process would leave Ny
constant yet the net result might be a shrinkage of the volume. The assumption is here
made that such processes are unlikely to be the dominant ones.
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Recalling the definition of 4%, in (28), we may writc

A - [ lges(R) - 1HaR2dR - | [endR) - 1J4mRe dR
0

& T

- ( [ges(R) — gus(RYWmR* dR

0
a0

i [ges(R) — gus(RY)A7R* dR (42)

Tows

In the last form on the r.h.s. of (42) we have assumed that there exists a
hard-core diameter oy-g , which is common to the L-S and H-S pairs, below
which the radial distribution function vanishes.!® For a relatively inert solute
S we may use the approximate expansion valid for R aycand W, kT 7 1

g (R) = exp[— WERKT] ~ |- [WE(RKT) (43)

where W (R) is the potential of average torce for the pair of species i and j
at distance R: hence

Ain ~(UKT) | VR WEIRBTR dR (44)
Y IWS
The general expected forms of WA R) and W (R) are depicted in Fig. 2.
Since H must have more neighbors than an L molecule, 1t is clear that at
short distances near gy, WE(R) will show a repulsive behavior relative to
WA(R).

The quantity W ii(R) — WE(R) is simply the work required to transfer
an S molecule at a distance R from L to a distance R from f{ (see demonstra-
tion in Fig. 3).

Because of the peculiar behavior of 1, and W, ncar oy it s clear
that at R 2 oy this work of transfer will be positive. Morcover since most
of the contribution to the integral (44) comes from, say oy =0 R 2 204 ¢ .
we conclude that 43 for our particular choice ol the TSM will be a positive
quantity.

¥ Since both L and # molecules are water molecules, itis always possible to find such a
common hard-core diameter oy, which s roughly equal to (o * o) 2. One should
remember that go¢ is ¢ssentially the radial distribution function of § around a water
molecule with the additional restriction that this water molecule must have at most K'*
neighbors in the sense of Ref. 2. Similarly, gy¢ involves the restriction that the water
molccule must have more than A* ncighbors. In both cases an impencetrable radius
shoutd exist which is characteristic of (he water-solute pair. It s possibie thuat for an
H molecule a larger hard-core diameter will be ceffective. For instance, if H is detined
as a molecule with 12 coordination number, an S molecule will be excluded from a
spherc of about ows + o around the center of H. (See aiso Fig. 2.)

822/7/1-2
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w'?
Wis (R) w2 (R)

Fig. 2. Schematic form of the functions i} (R) and W,}(R). The essential differences
between the two curves are: (1) W Z(R) may exhibit an additional repulsive range. say,
at ows < R 35 ows -+ o . (2) The first minimum of WAR) i is expected to be shallower
than the corresponding minimum of WF(K). The quantity 47, in (44) is rclated to the
difference of the two shaded areas under W \(R) and W X(R).

w iR W R
R e
Y’l
m @

Fig. 3. The process of transferring an S molccule from L to M is depicted in two parts:
(1) Transfer of S from infinity to the distance R from L involves the work W X(R).
(2) Transfer of S from infinity to a distance R from H involves the work W 2i(R).
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The positive sign of 43, may also be reinterpreted in terms of the excess
“aflinity” of S to L relative to an H molccule. From the form of 4}, in (42)
it is clear that py 4§, measures the excess of S molecules, beyond the distance
of oy, around L relative to H. A positive value of 47, would mean that
S “prefers” to be near an L molecule rather than an If molecule. In lact the
lutter interpretation coincides with some specific models of aqueous solutions
in which S is allowed to interact only with one form, hence introducing such
an asymmetry in the very definition of the model.t"

So far we have shown that the stabilization elfect is positive for this
particular choice of a TSM. We may sum up the arguments as foilows.
it we choose any TSM for which one species has fower local density than
the other, then it is likely that this species will have a larger contribution to
the volume and simultaneously'® will provide more space to accommodate S,
hence the equilibrium L 2 A will be shifted toward the L form.

The unique response of water 1s manifested in the following properties.
In the first place & TSM may be found for which the stabilization effect may
be large.’ 1.e., the conditions listed in the end of the previous section are
fulfilled. More important, however, is the phenomenon that positive stabiliza-
tion cllect is coupled with a negative *“heat of reaction” (H, 11, . 0). Itis
most instructive to recall that the sign of the product (F, - A, 08, - Fiy
was found to be decisive in cexplaining the temperature dependence of the
volume,™2 which in turn reflects the unique property of water that “low
local density’™ is on the average related to “strong binding cnergy™ (sce
Appendix B of Ref. 2).

Although we have avoided the explicit introduction of the concept of
hydrogen bonds, it is clear that the L form chosen in this section may be
identified with the hydrogen-bonded wuater molecules. We cannot say
anything about the exact geometry of the molecules surrounding such a
nmiolecule. For our purposes it is sufficient to assume that fully hydrogen-
bonded molecules have low Jocal density. If these are stabilized by a solute S.
then it is hkely that more hydrogen bonds are induced by the addition of
such solutes.

Finally, we should like to comment on one interesting feature of the
expression (36) for the stabilization effect. We note that the effect is butlt up
of two parts. The first, ¥V, - V,,, is purcly a property of the solvent,

1 We feel that the signs of P, -- 7 and 4%, arc somehow related to each other. A specics
L which is locally more “open’ is likcly to provide more space to accommodate a solute
molecule. We did not succeed in establishing such a relationship, however.

1 By “large,” we may be satisfied if the stabilization effect is of the order of unity. In
which case, multiplication by f; — I, which may be of the order of magnitude of
hydrogen bond energy, will already produce a large reluxation term to the enthalpy of
solution.
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whereas 4y, reflects the relative preference of S as to the choice of its
environment.

The question raised is the following: Is it possible to find either a real
solute S or a TSM in such a way that 47, 0 but at the saume time
V.- Vy > 07If that is possibic, we shall have a somewhat quecr situation:
that the stabilization effect, though induced by the presence of §, is independ-
ent of any property of S, and s purcly a property of the solvent.!* One
interesting example could be a point particle which doces not interact at all
with the water molecules. (Note that iff the solvent molecnles have an
cffective hard core of radius r. then a suitable “hard™ point particle must
have a radius of —r.) In this case d7,,  Osince g, (R) - gy R) 1. The
reason for the “stabilization™ effect in this case s quite clear, for the point
particle still contributes to the pressure. Under constant pressure, the system
should expand upon the addition ol these point particles, hence the £ form
is expected to be more favorable than before. (‘The author is very grateful to
the referee of this article for pointing out this ¢xample.)

5. APPLICATION OF A CONTINUOUS MIXTURE-MODEL
APPROACH

In this section some general consequences of the application of the
mixture-model approach to solutions will be discussed. It will be shown that
the gencral concept of the “structural changes™ in the solvent is totally
dependent on our choice of the classification into components. Nevertheless,
for some particular QCDF a distin:tion between a static and a relaxation
term may be useful.

Let Ny (o) dx be the average number (in the T, P, Ny, N ensemble) of
water molecules which are distinguished by some local property having a
numerical valuc between a and » ° dx [for concreteness we refer to the
examples given in Ref. 2]. Similarly N (f2) df% 15 the average number of S
molecules classified according to some other property, having a value between
B and B - dB. The total energy of the system may be viewed either as a
Junction of Ny and Ny or as a functional of Ny(x) and N (). Using the
latter point of view, we may apply the generalized Euler thecorem to obtain!®

EMNw,Ns) = | Ew(Nw, Ns, 9 N dx ¢ | ExNw Ny, B) Ny(B) df
(45)

12 A rclated case in which the relaxation term is purely dependent on the property of the
“solvent” has been demonstrated in @ simphtied model in Ref, 7,

¢ As in Refs. 1 and 2, we shali denote the whole function by Ny and its a component by
Nu'(:l).
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where the partial molar quantities in (45) are defined as the functional
derivatives of the energy

Ew(Nw 9 N_g N '\) (5]1‘(N,(' N N‘\)_'VO,V” (:!) (4())
E.s'(NW s Nx ’ ,B) bll’(!\.u‘ . N.\)-"b/vx(ﬁ) (47)

and the integrations in (45) extend over the whole range of values of « and
3 respectively.
The experimental partial molar energy of the solute is

£y o[BS L]

N

P AEdNG Ny )

aEW(NW .Ng, a) L
. j o Nuw() dn oD NGB B
i [ Ew(Nw, Ny, o) ?f}f-hw,(‘ﬁm : [1;\(NW,N_S-.B)“’:,'/;;@(1,8
v Y . S

(48)

This is the most general expression for Eg in the mixture-model approach. The

first two terms may be referred to as the “static” terms and the last two

as the “refaxation” terms for the solute and solvent distributions, respectively.

In general the distinction between the two kinds of terms strongly depends

on the choice of the QCDF. It is instructive to demonstrate a specific choice
for which E is purely a relaxation term.!3

From here on we shall specialize l'or the case of very dilute solutions

(ps ->0) and also assume, for simplicity, pairwise additivity of the total

potential energy. We now define the following two QCDF's for H and S:

Nl = wadv [ dX¥PX™, vyolsr(xXY) - 1) (49)

” ~

Ny(v) = NsJ dVJ dXVPOXY 0SB XY) - ) (50)

where X~ stands for the configuration of the whole system of &N Ny N
molecules, and P(XY, V) is the probahhity density, in the P, 7, Ny, Ny
ensemble, of observing the volume V and configuration X¥. The binding
cnergics are defined as

N
BYXMy Y oune (51

13 It is a trivial matter to demonstrate the other eatreme case for which £ is a pure static
quantity. Choose a TSM with, say p, =~ 0 and from (36) it follows that the corresponding
relaxation term will be vanishingly small, too.
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and
N

BexM - YUy (52)
FR
Here U*¥ is the solvent-solvent pair potential and U™ is the solute solvent
pair potential. Note the difference in the delinitions of 8 and B;".
The total cnergy of the system mav be written as

L= Nyep® - NgeX -} J vNw(v) dv - - ‘ vN (v dv (53)

Note that since N is presumed small, solute-solute interactions have been
neglected in (83); €% is the average kinetic energy per molecule of species i
(including any internal cnergies il cxist). Using the normalization conditions

Ny - J Nw(v) dv (54)

Ny - j Ns(v) dv (55)

we may write (53) in the form

E— f (ew* 4 1) Nulv) dv - | (5% + v) Ns(v) dv (56)

In this representation we identify the partial molar energies of the quasi-
components

Ew(NW N NS N V’) - SE,-'!SN;V(VI) == GufK "',L %VI (57)
Es(Ny , Ng,v") -- SESNGV') ~- ek 4" (58)

The most significant feature of this classification is that the partial
molar quantities in (57) and (58) do not depend on the compositions Ny
and Ng. Hence, using the general expression in (48), we get for the partial
molar energy of S

Es = [ (ew* + DNeNw@IENS db - | (5K = v)[eNsv)/eNg) dv

(59)
In this form Ej is viewed as a pure relaxation quantity. It includes a relaxation
among the solute species and a rclaxation among the solvent species. In
practical application it is more common to consider only the latter structural
changes. A different expression for the partial molar energy has been derived
by Buff and Brout.‘®® This relation employs molecular distribution functions
of order two and three, which, though cxact, are less suitable for our purposes.
The equivalent expression for Eg in (59) is more closely related to current
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ideas on “‘structural changes™ in aqucous solutions. [t may also provide a
useful approximation to E; when the form of the QCDF is known [see, for
example, the case cited in Eq. (71)].

Since all the derivatives in (59) are for Ny constant, we have

j ewK[BNwW)eN g dv - 0 (60)
[ esKONS)EN ] dv = ek (61)
and
ON(v)
f aNs' dv 8N\ [Ns ' vysv) dv] — B() (62)

where xg(v) == Ng(v)/ N is the probability density that a selected S molecule
will have binding energy between v and » -+ dv and B)* is the average
binding energy of the solute to the solvent at infinite dilution.

Using (60)—(62) we may rewrite (59) as

Es=— ek - B™ .} | o6 Nw)ieN §] dv (63)

Here the partial molar energy is expressed as an average kinetic energy,
average binding energy to the solvent, and a “structural change™ of the
solvent induced by the addition of the solute. The standard cnergy of solution
(at infinite dilution) from the gaseous phasc is

AEQ = B + & [ v[e NuryéNg) dv (64)

Nole that for a hard-sphere solute B;” 0 and all of the energy of
solution is interpreted through (64) as “‘structural changes” in the solvent.

We shall now briefly mention a second QCDF which is particularly
useful to express the partial molar volume. The appropriatc QCDF 15 the
one based on the volume of the Voronoi polyhedra discussed in Ref. 2. Let
N,(¢) dp be the average number of x molecules (« - 1, S) having Yoronoi
polyhedra of volume between ¢ and ¢ - dd. The total volume of the system
may be expressed as‘-2

VP, T,Nw,Ny) = | $Nu(g)d$ * | $Ny($) dd (65)

Note that in the construction of the Voronoi polyhcdron of cach molecule all
centers of the molecules, solute and solvent. should be considered. The
partial molar volume of S is

[3V(Nw,Ns)

_— [ ENw() Ns(d)
Vs = N ]NW = [¢< N b J¢> b 66)
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As in (59), we have, in this representation, expressed Vs as a pure relaxation
quantity.
At infinite dilution

i 0 o] - 5
Hence
°ir d J SIENw(P)eN ] dep (08)

where ¢,° is the average volume of the Voronoi polyhedra of the solute at
infinite dilution and the second term is the “structural change” of the solvent.

At this stage it is appropriale to reflect on the usefulness of the mixture-
model approach.® For concretencss we refer to (64). The average binding
encrgy of, say, argon to water and to other liquids such as alcohols 1s expected
to be of similar order of magnitude (this statement becomes exact for hard-
sphere solutes). Hence any difference in the energy of solution of argon in two
liquids may legitimately be assigned to structural changes. Now, for a simple
fluild we expect that the distribution function x(v) will consist of a single
sharp peak. A limiting case is a solvent of hard spheres, for which x(v) -~ 8(r)
and hence

(8/ON ) {l { v N(v) 1/;!] -0 (69)

In a simple solvent with a very narrow distribution function x(v) we expect
that any structural changes within its v components will not give rise 10 a
large relaxation term. Next supposc that water has a very widely spread
distribution function such as the onc depicted in Fig. I(b). As an extreme
example the “idealized” TSM (see Ref. 2) proposes that

Nw() == N, (v - ) -+ N, 8(v — v,) (701

Hence

AE = B 0 Mey v )@ NENs)wy, (7

We have already seen in Section 3 that if the two values »y and v, arc well
separated and if x;x, is not too small, then a large relaxation in (71) s
expected, which, in principle, may have a dilferent order of magnitude than
Byv.

18 A detailed discussion of the question, “‘ln what sense is the mixture model uscful?,”
is presented in Ref, 7, using a very simplified inodet.
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If the real curve of xu(v) looks somewhat like the one in Fig. 1(b), then
using a cutoff point v*, we construct &4 TSM by defining

e

Nyoo | N de (72)

L

N2 - l\rw - ‘Vl (73)

and then we rewrite (64) as

AEE = B 4. ‘ vNy(v) (/V]:

A Nw

8§ b - -
- By + ’__;‘" (1 Ny = 7,N,

where 7, and v, are defined as the average binding energies of the two com-
ponents, respectively. The last form on the r.h.s. of (74) makes a distinction
between three kinds of structural rearrangements. The first include rearrange-
ments within the v components for which v - v*, the sccond consists of
rearrangements within the v components for which v 2 v*, and the last term
reflects the rearrangements in which v components are transferred from one
group to the second.

We can now make a general statement on the conditions required for a
useful TSM. If the real curve x,(v) dv is well concentrated at about two
values, say v, and »,, then the structural changes within each group of »
components are likely to produce negligiblc contribution to the partial molar
energy. Therefore the second and third terms in (74) may be absorbed in the
average binding energy to construct & new static term

I i az
NN, ‘ 2 "VE (‘é'/;v'\‘_)vaN: (75)

AEs* = By 4 5 N, k

The only important structural changes will be the oncs associated with the
transfer from one group to another. Such a transfer carries a relatively large
value of », — v, , but more important, the stabilization effect is expected to
be large for reasons given in Section 3.

Similar arguments may be employed to construct a useful, say, threc-
structure modecl, if it turns out that the function x,(v) exhibits three well-
separated peaks.

e
Ny
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6. DISCUSSION AND CONCLUSIONS

The most important conclucion of this paper may be stated as follows:
Various notions like ‘“‘structure-making” or “‘structure-breaking’ effects
totally depend on how we choose to view the solvent. More specifically, they
depend on our basic definition of the structure of water. There is no uniquc
way of defining the structure of water. but once we have adopted a reasonable
definition, then it becomes meaningful to speak of structural changes in
various directions.

One way to invoke the concept of the structure of water is through the
mixture-model approach. Here one simply identifics the concentration of one
component, presumed to represent the structure, as an index measuring the
degree of structure of the system. For any such a definition one may ask how
the structure changes by the addition of a solutc. Section 3 gives the general
answer to this question in terms of molccular distribution functions [sce also
relation (C.11) in Appendix C].

Of course, it would have been desirable to «tart with the one-component
point of view (for the solvent) and proceed to carry out ali the computations
and get all answers to our questions. This goal does not seem to be
attainable in the foreseeablic future.

Once we have recognized the extreme complexity of persuing our
problem along the conventional routes of statistical mechanics, we may cither
abandon the whole area or try to get partial unswers by using nonconventional
routes. It is in this respect that the mixture-model approach has been success-
ful, since it provides a qualitative interpretation for an immense body of
experimental facts on aqueous solutions.

We should like to end up with two comments regarding attempts to
detect structural changes in water.

One way of measuring such an effect is to apply a computer-experiment
technique, by the use of which a simulation of the propertics of the system of
interest may be attained. In particular, all of the quasicomponent distribution
functions may be computed and their responses to addition of a solute muy
be studied. The severe conditions required to achieve a large relaxation efleet
should be borne in mind, however. One may casily miss such an effect by un
improper choice of molecular, as well as thermodynamic, parameters for thie
system.

A second way of detecting a stabibization effect 1s through experimental
methods. Here there is the ambiguity of interpreting an experimental quantity
in terms of structural changes, in the tirst place. But more important, in
most cases one attempts to estimale directly the structural change, say AN,
induced by the addition of AN moles of solute. For very small AN, the
corresponding 4N, is also small and may be undetectable. For large AN 1t
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is possible that the stabilization effcet has already become small or even
changed sign, hence again a large valuc of AN, may be undetectable. These
considerations do not apply to the partial molar quantities discussed in this
paper. Here the slope itself, ¢N,j¢Ng, enters, and not N, ; hence a large
contribution from structural changes may be revealed even at infinite
dilution, pg — 0.

APPENDIX A. EXAMINATION OF SOME LIMITING CASES

We have seen in section 3 that the stabilization effect tends to zero at
one of the following limiting cases: {1) when either x, or xy is very small,
(2) when the two components are very similar. We shall now show that the
static term, say, of the partial molar volume of S has the correct form at
these limiting cases.

1. To get a TSM for which, say x, is very small, we choose any QCDF,
say x(v), and define

xoo [ X0 dy, =1 xy (A1)

v a

Clearly if € — 0, we get
xp -0, Pu = Pw Guu > Guw . Gys = Guws Vie > Ve
Hence the static partial molar volume n (25) tends to
Ve* = [I + pulGuw — Gu)llpw (A.2)

which is the correct form of the limiting partial molar volume of S in water,

2. To get a TSM with very similar components, one makes an
appropriate division of the v axis, v, , v, ,..., and defines
Vil
xx= Y f W) dv, xy=1—x, (A.3)

i=0dd ¥ ¥¢

Clearly if the invervals »;,, — v; become very small, then the two species
become very similar; hence

Gis ~ Gus ~ Gws, Gie~Guyu ~ G ~Gww, Vi~Vy~Vy
and the static partial molar volume of S in (25) tends to

Ve* > (1 + pulGuww — Guws)llpw (A.4)

which is again the correct form of the limiting partial molar volume of S in
water.
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APPENDIX B. FORMAL PROOF THAT n > 0
For any two-component system with species « and 8 let
4, = N, — (N (B.1)
4y - N, - Np (B.2)
be defined in the grand canonical ensemble. Relation (14) may be written as
(4,455 = V(p.psGap 1 padap) (B.3)

consider the average

0< <[—A—°‘— — _A_@_ 2> = <Au;> 4 <Auf/ _9 (4.4
Pa Po Pa ps* PPy

PazGan —{_ Pm p 2G _‘;_ P: N
[t piGu e o
l//
= [pa ":_ Pn _If_ paPB(Gaa + GBU - 20&5)]
Pobn (B.4)

Hence, from the definition of % in (18) 1t follows that

n 0

This result is also consistent with the implication of the stability condition
applied to (35).

APPENDIX C. A CHECK OF CONSISTENCY

In Appendix A we have shown that at two limiting cases Vg* — Vg
(at infinite dilution). Here a stronger test of consistency is examined. The total
partial molar volume Vs in the TSM representation

Vs = V* 4- (V- VyleNJeNs)N, (C.1)

must be independent of the particular choice of the TSM (though each term

depends on the classification procedure).
To show this, we need the following general relations between the various

G‘, -
For any distance R conservation of the total water molecules around S
requires that

pu8us(R) + pr8is(R) — pugws(R) (C2)
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where gu-s(R) is the radial distribution function for a water molecule (any)
around S. Similarly we get the following iwo conscrvation relations;

PL8L(R) 4 pugudR) pu Lui(R) (C.3)
Pulun(RY 1 pr&on(R) puLuulR) (C.4)

Using the definition of G,;, we may integrate these relations to obtain

puGus + p1Grs puliyg (C.5)
PiGri A puluy puw Gy p (C.6)
PIIGHII i PLGIII N Pu'(fu‘/l (C.7)

The last two may be combined to get
pltGr + Pl!zGuu § 200puGne -~ puw(prUwr ¥ puliwy) - pwGuw (C.8)

Relations (C.5) and (C.8) form the hnk hetween the TSM and the one-
component (for that water) points of view. Applying these relations to (C.1),
we get, after some algebra, the expected relation for Vi :

Vs B “/PW)(' I P;;'(;Li'rl P ig) (C.9)
which is independent of the particular classification. Relations (C.6) and
(C.7) may also be used to get a simple relation for the difference

VL VM = (Pw."”’/)((l'u‘u Gy ) (C.10)

The requirement that ¥, ¥, be positive is therefore cquivalent to the
statement that the average number of excess water molecules around f1 is
larger than the average number of excess water molecules around L.

With the help of (C.10) the expression for the stabilization etfect may
be rewritten in term of molecular propertics.

Ii”}) (N /NN,y = X xXppwl(Gwy Guy) - (Ges Gl (C1)
frg
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